Estimation and Prediction for Flexible Weibull Distribution Based on Progressive Type II Censored Data

O. M. Bdair , R. R. Abu Awwad , G. K. Abufoudeh , M. F. M. Naser

Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (3) : 255 -277.

PDF
Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (3) : 255 -277. DOI: 10.1007/s40304-018-00173-0
Article

Estimation and Prediction for Flexible Weibull Distribution Based on Progressive Type II Censored Data

Author information +
History +
PDF

Abstract

In this work, we consider the problem of estimating the parameters and predicting the unobserved or removed ordered data for the progressive type II censored flexible Weibull sample. Frequentist and Bayesian analyses are adopted for conducting the estimation and prediction problems. The likelihood method as well as the Bayesian sampling techniques is applied for the inference problems. The point predictors and credible intervals of unobserved data based on an informative set of data are computed. Markov Chain Monte Carlo samples are performed to compare the so-obtained methods, and one real data set is analyzed for illustrative purposes.

Keywords

Flexible Weibull distribution / Progressive censoring data / Bayes estimation / Bayes prediction / Gibbs sampling / Simulation

Cite this article

Download citation ▾
O. M. Bdair, R. R. Abu Awwad, G. K. Abufoudeh, M. F. M. Naser. Estimation and Prediction for Flexible Weibull Distribution Based on Progressive Type II Censored Data. Communications in Mathematics and Statistics, 2020, 8(3): 255-277 DOI:10.1007/s40304-018-00173-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aarset MV. How to identify bathtub hazard rate. IEEE Trans. Reliab.. 1978, 36 106-108

[2]

Ahmad Z, Hussain Z. Flexible Weibull distribution. J. Comput. Math. Sci.. 2017, 8 6 251-260

[3]

Al-Hussaini EK. Predicting observable from a general class of distributions. J. Stat. Plan. Inference. 1999, 79 79-81

[4]

Balakrishnan N, Aggrawala R. Progressive Censoring, Theory, Methods and Applications. 2000 Boston: Birkhauser

[5]

Bebbington M, Lai CD, Zitikis R. A flexible Weibull extension. Reliab. Eng. Syst. Saf.. 2007, 92 719-726

[6]

Bebbington M, Lai CD, Zitikis R. Modeling human mortality using mixtures of bathtub shaped failure rate distributions. J. Theor. Biol.. 2007, 245 528-538

[7]

Casella G, Berger R. Statistical Inference. 2002 2 New York: Duxbury

[8]

Chen MH, Shao QM, Ibrahim JG. Monte Carlo Methods in Bayesian Computation. 2000 New York: Springer

[9]

Choqueta R, Guédonb Y, Besnarda A, Guillemainc M, Pradel R. Estimating stop over duration in the presence of trap-effects R. Ecol. Modell.. 2013, 250 111-118

[10]

Cohen AC. Progressively censored samples in life testing. Technometrics. 1963, 5 327-329

[11]

Dahlquist, G., Björck, Å.: Numerical methods in scientific computing, Volume I, SIAM (2007)

[12]

David HA, Nagaraja HN. Order Statistics. 2003 3 New York: Wiley

[13]

Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970, 57 1 97-109

[14]

Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distribution. 1995 2 New York: Wiley and Sons

[15]

Kaminsky MP, Krivtsov VV. A simple procedure for Bayesian estimation of the Weibull distribution. IEEE Trans. Reliab.. 2005, 54 612-616

[16]

Kaminsky, K.S., Nelson, P.I.: Prediction of order statistics. In: Balakrishnan, N., Rao, C.R. (eds.) Hand book of statistics, order statistics: applications, vol. 17, pp. 431–450. North-Holland, Amsterdam (1998)

[17]

Kaminsky KS, Rhodin LS. Maximum likelihood prediction. Ann. Inst. Stat. Math.. 1985, 37 707-717

[18]

Kim C, Jung J, Chung Y. Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Stat. Pap.. 2011, 52 1 53-70

[19]

Kundu D. Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics. 2008, 50 144-154

[20]

Kundu D, Raqab MZ. Bayesian inference and prediction for a Type-II censored Weibull distribution. J. Stat. Plan. Inference. 2012, 142 1 41-47

[21]

Lawless JF. Statistical Models and Methods for Life Time Data. 1982 New York: Wiley

[22]

Lehmann EL, Casella G. Theory of Point Estimation. 1998 2 New York: Springer

[23]

Li Y, Ghosh SK. Efficient sampling methods for truncated multivariate normal and Student-t distributions subject to linear inequality constraints. J. Stat.Theory Pract.. 2015, 9 4 712-732

[24]

Madi MT, Raqab MZ. Bayesian prediction of temperature records using the Pareto model. Environmetrics. 2004, 15 701-710

[25]

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. J. Chem. Phys.. 1953, 21 6 1087-1092

[26]

Murthy DNP, Bulmer M, Eccleston JA. Weibull model selection for reliability modelling. Reliab. Eng. Syst. Saf.. 2004, 86 3 257-267

[27]

Romberg W. Vereinfachte numerische integration. Det Kongelige Norske Videnskabers Selskab Forhandlinger (Trondheim). 1955, 28 7 30-36

[28]

Selim MA. Bayesian estimations from the two-parameter bathtub-shaped lifetime distribution based on record values. Pak. J. Stat. Oper. Res.. 2012, 8 2 155-165

[29]

Singh SK, Singh U, Sharma VK. Bayesian estimation and prediction for flexible Weibull model under TypeII censoring scheme. J. Probab. Stat.. 2013, 2013 1-16

[30]

Suprawhardana, M.S., Prayoto, S.: Total time on test plot analysis for mechanical components of the RSG-GAS reactor. Atom Indones 25(2), 81–90 (1999)

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/