Benford or Not Benford: A Systematic But Not Always Well-Founded Use of an Elegant Law in Experimental Fields

Stéphane Blondeau Da Silva

Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (2) : 167 -201.

PDF
Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (2) : 167 -201. DOI: 10.1007/s40304-018-00172-1
Article

Benford or Not Benford: A Systematic But Not Always Well-Founded Use of an Elegant Law in Experimental Fields

Author information +
History +
PDF

Abstract

In this paper, we will propose a way to accurately model certain naturally occurring collections of data. Through this proposed model, the proportion of d as leading digit, $d\in \llbracket 1,9\rrbracket $, in data is more likely to follow a law whose probability distribution is determined by a specific upper bound, rather than Benford’s Law, as one might have expected. These probability distributions fluctuate nevertheless around Benford’s values. These peculiar fluctuations have often been observed in the literature in such data sets (where the physical, biological or economical quantities considered are upper bounded). Knowing beforehand the value of this upper bound enables to find, through the developed model, a better adjusted law than Benford’s one.

Keywords

Benford’s Law / Leading digit / Experimental data

Cite this article

Download citation ▾
Stéphane Blondeau Da Silva. Benford or Not Benford: A Systematic But Not Always Well-Founded Use of an Elegant Law in Experimental Fields. Communications in Mathematics and Statistics, 2020, 8(2): 167-201 DOI:10.1007/s40304-018-00172-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beer TW. Terminal digit preference: beware of Benford’s law. J. Clin. Pathol.. 2009, 62 2 192

[2]

Benford F. The law of anomalous numbers. Proc. Am. Philos. Soc.. 1938, 78 127-131

[3]

Burke J, Kincanon E. Benford’s law and physical constants: the distribution of initial digits. Am. J. Phys.. 1991, 59 952

[4]

Costasa E, Lopez-Rodasa V, Torob F, Flores-Moya A. The number of cells in colonies of the cyanobacterium microcystis aeruginosa satisfies benford’s law. Aquat. Bot.. 2008, 89 3 341-343

[5]

Deckert J, Myagkov M, Ordeshook P. Benford’s law and the detection of election fraud. Polit. Anal.. 2011, 19 245-268

[6]

Diekmann A. Not the first digit! Using benford’s law to detect fraudulent scientific data. J. Appl. Stat.. 2007, 34 3 321-329

[7]

Friar JL, Goldman T, Pérez-Mercader J. Genome sizes and the Benford distribution. Plos One. 2012, 7 5 e36624

[8]

Gauvrit N, Delahaye J-P. Pourquoi la loi de benford n’est pas mystérieuse. Mathématiques et Sciences Humaines. 2008, 182 2 7-15

[9]

Golbeck J. Benford’s law applies to online social networks. Plos One. 2015, 10 8 e0135169

[10]

Hill T. Random-number guessing and the first digit phenomenon. Psychol. Rep.. 1988, 62 3 967-971

[11]

Hill T. A statistical derivation of the significant-digit law. Stat. Sci.. 1995, 10 4 354-363

[12]

Knuth D. The Art of Computer Programming 2. 1969 New York: Addison-Wesley

[13]

Leemis L, Schmeiser B, Evans D. Survival distributions satisfying Benford’s Law. Am. Stat.. 2000, 54 4 236-241

[14]

Newcomb R. Note on the frequency of use of the different digits in natural numbers. Am. J. Math.. 1881, 4 39-40

[15]

Nigrini M, Miller S. Benford’s Law applied to hydrology data-results and relevance to other geophysical data. Math. Geol.. 2007, 39 5 469-490

[16]

Nigrini, M., Wood, W.: Assessing the integrity of tabulated demographic data. 1995. Preprint

[17]

Nigrini MJ. I’ve got your number. J. Account.. 1999, 187 5 79-83

[18]

Raimi RA. The first digit problem. Am. Math. Mon.. 1976, 83 7 521-538

[19]

Rauch B, Göttsche M, Brälher G, Engel S. Fact and fiction in EU-governmental economic data. Ger. Econ. Rev.. 2011, 12 3 243-255

[20]

Scott, P.D., Fasli, M.: Benford’s Law: an empirical investigation and a novel explanation. CSM technical report 349, University of Essex, 2001. https://cswww.essex.ac.uk/technical-reports/2001/CSM-349.pdf

[21]

Sehity T, Hoelz E, Kirchler E. Price developments after a nominal shock: Benford’s Law and psychological pricing after the euro introduction. Int. J. Res. Market.. 2005, 22 4 471-480

[22]

Tödter K. Benford’s Law as an indicator of fraud in economics. Ger. Econ. Rev.. 2009, 10 339-351

[23]

Tolle C, Budzien J, Laviolette R. Do dynamical systems follow Benford’s law?. Chaos. 2000, 10 2 331-336

[24]

Van Rossum, G.: Python tutorial, volume Technical Report CS-R9526. 1995. Centrum voor Wiskunde en Informatica (CWI)

[25]

Varian H. Benford’s Law (letters to the editor). Am. Stat.. 1972, 26 3 62-65

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/