Quantization of the Blow-Up Value for the Liouville Equation with Exponential Neumann Boundary Condition

Tao Zhang , Changliang Zhou , Chunqin Zhou

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (1) : 29 -48.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (1) : 29 -48. DOI: 10.1007/s40304-017-0126-5
Article

Quantization of the Blow-Up Value for the Liouville Equation with Exponential Neumann Boundary Condition

Author information +
History +
PDF

Abstract

In this paper, we analyze the asymptotic behavior of solution sequences of the Liouville-type equation with Neumann boundary condition. In particular, we will obtain a sharp mass quantization result for the solution sequences at a blow-up point.

Keywords

Neumann problem / Concentration–compactness phenomena / Blow-up behaviors / Mass quantization

Cite this article

Download citation ▾
Tao Zhang,Changliang Zhou,Chunqin Zhou. Quantization of the Blow-Up Value for the Liouville Equation with Exponential Neumann Boundary Condition. Communications in Mathematics and Statistics, 2018, 6(1): 29-48 DOI:10.1007/s40304-017-0126-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of $-\,\Delta u=V(x)e^{u }$ in two dimensions. Commun. Partial Differ. Equ.. 1991, 16 1223-1253

[2]

Bao J, Wang LH, Zhou CQ. Blow up analysis for solutions to Neumann boundary value problem. J. Math. Anal. Appl.. 2014, 418 142-162

[3]

Chen W, Ding W. Scalar curvatures on $S^2$. Trans. Am. Math. Soc.. 1987, 303 365-382

[4]

Chang SYA, Gursky MJ, Yang PC. The scalar curvature equation on 2- and 3-spheres. Calc. Var. Partial Differ. Equ.. 1993, 1 205-229

[5]

Chen CC, Lin CS. Topological degree for a mean field equation on Riemann surfaces. Commun. Pure Appl. Math.. 2003, 56 1667-1727

[6]

Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math. J.. 1991, 63 615-623

[7]

Chang SYA, Yang PC. Prescribing Gaussian curvature on $S^2$. Acta Math.. 1987, 159 215-259

[8]

Djadli Z. Existence result for the mean field problem on Riemann surfaces of all genuses. Commun. Contemp. Math.. 2008, 10 205-220

[9]

Ding W, Jost J, Li J, Wang G. Existence results for mean field equations. Ann. Inst. H. Poincare Anal. Non Lineaire. 1999, 16 653-666

[10]

Ding W, Jost J, Li J, Wang G. An analysis of the two-cotex case in the Chern–Simons–Higgs model. Calc. Var. Partial Differ. Equ.. 1998, 7 87-97

[11]

Guo YX, Liu JQ. Blow-up analysis for solutions of the Laplacian equation with exponential Neumann boundary condition in dimension two. Commun. Contemp. Math.. 2006, 8 737-761

[12]

Jost J, Wang G, Zhou CQ. Metrics of constant curvature on a Riemann surface with two corners on the boundary. Ann. Inst. H. Poincare Anal. Non Lineaire. 2009, 26 437-456

[13]

Jost J, Wang G, Zhou CQ, Zhu MM. The boundary value problem for the super-Liouville equation. Ann. Inst. H. Poincare Anal. Non Lineaire. 2014, 31 685-706

[14]

Liouville J. Sur l’équation aux différences partielles $\frac{d^2}{dudv}\log \lambda \pm \frac{\lambda }{2a^2}=0$. J. Math. Pures Appl.. 1853, 18 71

[15]

Li YY, Shafrir I. Blow-up analysis for solutions of $-\,\Delta u=Ve^u$ in dimension two. Indiana Univ. Math. J.. 1994, 43 1255-1270

[16]

Li YY, Zhu MJ. Uniqueness theorems through the method of moving spheres. Duke Math. J.. 1995, 80 383-417

[17]

Nolasco M, Tarantello G. Double vortex condensates in the Chern-Simons-Higgs theory. Calc. Var. Partial Differ. Equ.. 1999, 9 31-94

[18]

Struwe M, Tarantello G. On the multivortex solutions in the Chern–Simons gauge theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.. 1998, 1 109-121

[19]

Spruck J, Yang Y. On multivortices in the electroweak theory I: existence of periodic solutions. Commun. Math. Phys.. 1992, 144 1-16

[20]

Tarantello G. Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys.. 1996, 37 3769-3796

Funding

NSFC of China(11771285)

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/