Centralizers of X-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings

Vincenzo De Filippis , Feng Wei

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (1) : 49 -71.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (1) : 49 -71. DOI: 10.1007/s40304-017-0125-6
Article

Centralizers of X-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings

Author information +
History +
PDF

Abstract

Let R be a prime ring of characteristic different from 2, $Q_r$ be its right Martindale quotient ring and C be its extended centroid, G be a nonzero X-generalized skew derivation of R, and S be the set of the evaluations of a multilinear polynomial $f(x_1,\ldots ,x_n)$ over C with n non-commuting variables. Let $u,v \in R$ be such that $uG(x)x+G(x)xv=0$ for all $x\in S$. Then one of the following statements holds:

1.

$v\in C$ and there exist $a,b,c \in Q_r$ such that $G(x)=ax+bxc$ for any $x\in R$ with $(u+v)a=(u+v)b=0$;

2.

$f(x_1,\ldots ,x_n)^2$ is central-valued on R and there exists $a \in Q_r$ such that $G(x)=ax$ for all $x\in R$ with $ua+av=0$.

Keywords

X-Generalized skew derivation / Multilinear polynomial / Prime ring

Cite this article

Download citation ▾
Vincenzo De Filippis, Feng Wei. Centralizers of X-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings. Communications in Mathematics and Statistics, 2018, 6(1): 49-71 DOI:10.1007/s40304-017-0125-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Argaç N, Demir Ç. Generalized derivations of prime rings on multilinear polynomials with annihilator conditions. Turk. J. Math.. 2013, 37 231-243

[2]

Beidar KI, Martindale WS III, Mikhalev AV. Rings with Generalized Identities. 1996 New York: Marcel Dekker Inc.

[3]

Bresar M. On the distance of the composition of two derivations to the generalized derivations. Glasgow Math. J.. 1991, 33 89-93

[4]

Carini L, De Filippis V. Centralizers of generalized derivations on multilinear polynomials in prime rings. Sib. Math. J.. 2012, 53 6 1051-1060

[5]

Carini L, De Filippis V. Identities with generalized derivations on prime rings and Banach algebras. Algebra Colloq.. 2012, 19 Spec. 1 971-986

[6]

Carini L, De Filippis V, Scudo G. Power-commuting generalized skew derivations in prime rings. Mediterr. J. Math.. 2016, 13 53-64

[7]

Carini L, De Filippis V, Wei F. Generalized skew derivations cocentralizing multilinear polynomials. Mediterr. J. Math.. 2016, 13 2397-2424

[8]

Carini L, Scudo G. An annihilator condition with generalized derivations on multilinear polynomials. Commun. Algebra. 2014, 42 9 4084-4093

[9]

Chang J-C. On the identitity $h(x)=af(x)+g(x)b$. Taiwan. J. Math.. 2003, 7 103-113

[10]

Chang J-C. Generalized skew derivations with annihilating Engel conditions. Taiwan. J. Math.. 2008, 12 1641-1650

[11]

Chang J-C. Right generalized $(\alpha , \beta )$-derivations having power central values. Taiwan. J. Math.. 2009, 13 1111-1120

[12]

Chang J-C. Generalized skew derivations with nilpotent values on Lie ideals. Monatshefte Math.. 2010, 161 155-160

[13]

Cheng H-W, Wei F. Generalized skew derivations of rings. Adv. Math. (China). 2006, 35 237-243

[14]

Chou M-C, Liu C-K. An Engel condition with skew derivations. Monatshefte Math.. 2009, 158 259-270

[15]

Chuang C-L. GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc.. 1988, 103 723-728

[16]

Chuang C-L. Differential identities with automorphisms and antiautomorphisms I. J. Algebra. 1992, 149 371-404

[17]

Chuang C-L. Differential identities with automorphisms and antiautomorphisms II. J. Algebra. 1993, 160 130-171

[18]

Chuang C-L. Identities with skew derivations. J. Algebra. 2000, 224 292-335

[19]

Chuang C-L, Chou M-C, Liu C-K. Skew derivations with annihilating Engel conditions. Publ. Math. Debr.. 2006, 68 161-170

[20]

Chuang C-L, Lee T-K. Rings with annihilator conditions on multilinear polynomials. Chin. J. Math.. 1996, 24 177-185

[21]

Chuang C-L, Lee T-K. Identities with a single skew derivation. J. Algebra. 2005, 288 59-77

[22]

De Filippis V. A product of two generalized derivations on polynomials in prime rings. Collect. Math.. 2010, 61 303-322

[23]

De Filippis V. Annihilator of power values of generalized derivations on multilinear polynomials. Bull. Aust. Math. Soc.. 2009, 80 217-232

[24]

De Filippis V. Rather large subsets and vanishing generalized derivations on multilinear polynomials. Commun. Algebra. 2017, 45 6 2377-2393

[25]

De Filippis V, Di Vincenzo OM. Hypercentralizing generalized skew derivations on left ideals in prime rings. Monatshefte Math.. 2014, 173 315-341

[26]

Demir Ç, Argaç N. Prime rings with generalized derivations on right ideals. Algebra Colloq.. 2011, 18 Spec. 1 987-998

[27]

Dhara B, Argaç N. Generalized derivations acting on multilinear polynomials in prime rings and Banach algebras. Commun. Math. Stat.. 2016, 4 39-54

[28]

Dhara B, Argaç N, Albaş E. Vanishing derivations and cocentralizing generalized derivations on multilinear polynomials in prime rings. Commun. Algebra. 2016, 44 5 1905-1923

[29]

Hvala B. Generalized derivations in rings. Commun. Algebra. 1998, 26 4 1147-1166

[30]

Jacobson N. Structure of Rings. 1964 Providence: American Mathematical Society

[31]

Koşan MT, Lee T-K. b-Generalized derivations of semiprime rings having nilpotent values. J. Aust. Math. Soc.. 2014, 96 326-337

[32]

Lanski C. An Engel condition with derivation. Proc. Am. Math. Soc.. 1993, 118 3 731-734

[33]

Lee T-K. Generalized derivations of left faithful rings. Commun. Algebra. 1999, 27 8 4057-4073

[34]

Lee T-K. Derivations with invertible values on a multilinear polynomial. Proc. Am. Math. Soc.. 1993, 119 1-5

[35]

Lee T-K, Shiue W-K. Derivations cocentralizing polynomials. Taiwan. J. Math.. 1998, 2 457-467

[36]

Lee T-K, Shiue W-K. Identities with generalized derivations. Commun. Algebra. 2001, 29 10 4435-4450

[37]

Lee T-K, Zhou Y. An identity with generalized derivations. J. Algebra Appl.. 2009, 8 3 307-317

[38]

Leron U. Nil and power central polynomials in rings. Trans. Am. Math. Soc.. 1975, 202 97-103

[39]

Martindale WS III. Prime rings satisfying a generalized polynomial identity. J. Algebra. 1969, 12 576-584

[40]

Posner EC. Derivations in prime rings. Proc. Am. Math. Soc.. 1957, 8 1093-1100

[41]

Rania F, Scudo G. A quadratic differential identity with generalized derivations on multilinear polynomials in prime rings. Mediterr. J. Math.. 2014, 11 2 273-285

[42]

Wong T-L. Derivations with power central values on multilinear polynomials. Algebra Colloq.. 1996, 3 369-378

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/