Estimation of Mean in Double Sampling Using Exponential Technique on Multi-auxiliary Variates

Manish Kumar , Gajendra K. Vishwakarma

Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (4) : 429 -445.

PDF
Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (4) : 429 -445. DOI: 10.1007/s40304-017-0120-y
Article

Estimation of Mean in Double Sampling Using Exponential Technique on Multi-auxiliary Variates

Author information +
History +
PDF

Abstract

This paper presents exponential-type ratio and product estimators for a finite population mean in double sampling using information on several auxiliary variates. The proposed estimators can be viewed as a generalization over the estimators suggested by Singh and Vishwakarma (Austrian J Stat 36(3):217–225, 2007). The expressions for biases and mean square errors (MSEs) of the proposed estimators have been derived to the first degree of approximation. In addition, the expressions for minimum attainable MSEs are also investigated using the criterion for optimality of the weights. An empirical study is carried out in the support of the present study. Both theoretical and empirical findings are encouraging and support the soundness that the proposed procedures for mean estimation perform better than the usual unbiased estimators and other well-known estimators under some realistic conditions.

Keywords

Study variate / Auxiliary variate / Double sampling / Bias / MSE

Cite this article

Download citation ▾
Manish Kumar, Gajendra K. Vishwakarma. Estimation of Mean in Double Sampling Using Exponential Technique on Multi-auxiliary Variates. Communications in Mathematics and Statistics, 2017, 5(4): 429-445 DOI:10.1007/s40304-017-0120-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Srivenkataramana T. A dual to ratio estimator in sample surveys. Biometrika. 1980, 67 1 199-204

[2]

Chambers RL, Dunstan R. Estimating distribution functions from survey data. Biometrika. 1986, 73 3 597-604

[3]

Upadhyaya LN, Singh HP. Use of transformed auxiliary variable in estimating the finite population mean. Biom. J.. 1999, 41 5 627-636

[4]

Duchesne P. Estimation of a proportion with survey data. J. Stat. Educ.. 2003, 11 3 1-24

[5]

Gupta S, Shabbir J. On improvement in estimating the population mean in simple random sampling. J. Appl. Stat.. 2008, 35 5 559-566

[6]

Rueda, M., González, S., Arcos, A.: A predictive estimator of finite population proportion despite missing data. Appl. Math. Comput. 233, 1–9 (2014)

[7]

Munõz JF, Arcos A, Álvarez E, Rueda M. New ratio and difference estimators of the finite population distribution function. Math. Comput. Simul.. 2014, 102 51-61

[8]

Hidiroglou MA, Särndal CE. Use of auxiliary information for two-phase sampling. Surv. Methodol.. 1998, 24 11-20

[9]

Fuller, W.A.: Two-phase sampling. In: SSC Annual Meeting, Proceedings of the Survey Methods Section, pp. 23–30 (2000)

[10]

Hidiroglou MA. Double sampling. Surv. Methodol.. 2001, 27 2 143-154

[11]

Neyman J. Contribution to the theory of sampling human populations. J. Am. Stat. Assoc.. 1938, 33 101-116

[12]

Sukhatme BV. Some ratio-type estimators in two-phase sampling. J. Am. Stat. Assoc.. 1962, 57 628-632

[13]

Okafor FC, Lee H. Double sampling for ratio and regression estimation with sub-sampling the non-respondents. Surv. Methodol.. 2000, 26 2 183-188

[14]

Bart J, Earnst S. Double sampling to estimate density and population trends in birds. The Auk. 2002, 119 1 36-45

[15]

Diana G, Tommasi C. Optimal use of two auxiliary variables in double sampling. Stat. Methods Appl.. 2004, 13 275-284

[16]

Kumar M, Bahl S. Class of dual to ratio estimators for double sampling. Stat. Pap.. 2006, 47 2 319-326

[17]

Singh HP, Ruiz Espejo M. Double sampling ratio-product estimator of a finite population mean in sample surveys. J. Appl. Stat.. 2007, 34 1 71-85

[18]

Singh HP, Vishwakarma GK. Modified exponential ratio and product estimators for finite population mean in double sampling. Austrian J. Stat.. 2007, 36 3 217-225

[19]

Handique BK. A class of regression-cum-ratio estimators in two-phase sampling for utilizing information from high resolution satellite data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.. 2012, I 4 71-76

[20]

Singh HP, Tailor R, Singh S, Kozak M. A generalized method of estimation of a population parameter in two-phase and successive sampling. Qual. Quant.. 2013, 47 1733-1760

[21]

Vishwakarma GK, Kumar M. An improved class of chain ratio-product type estimators in two-phase sampling using two auxiliary variables. J. Probab. Stat.. 2014, 2014 1-6

[22]

Vishwakarma GK, Kumar M. A new approach to mean estimation using two auxiliary variates in two-phase sampling. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.. 2016, 86 1 33-39

[23]

Olkin I. Multivariate ratio estimation for finite populations. Biometrika. 1958, 45 154-165

[24]

Singh MP. Multivariate product method of estimation for finite populations. J. Indian Soc. Agric. Stat.. 1967, 19 1-10

[25]

Raj D. On a method of using multi-auxiliary information in sample surveys. J. Am. Stat. Assoc.. 1965, 60 270-277

[26]

Mukerjee R, Rao TJ, Vijayan K. Regression type estimators using multiple auxiliary information. Australian J. Stat.. 1987, 29 244-254

[27]

Rao PSRS, Mudholkar GS. Generalized multivariate estimator for the mean of finite populations. J. Am. Stat. Assoc.. 1967, 62 1009-1012

[28]

Srivastava SK. A generalized estimator for the mean of a finite population using multi-auxiliary information. J. Am. Stat. Assoc.. 1971, 66 404-407

[29]

Rao TJ. On certain problems of sampling designs and estimation for multiple characteristics. Sankhyā. 1993, 55 372-384

[30]

Diana G, Perri PF. Estimation of finite population mean using multi-auxiliary information. Metron. 2007, LXV 1 99-112

[31]

Vishwakarma GK, Singh HP. A general procedure for estimating the mean using double sampling for stratification and multi-auxiliary information. J. Stat. Plan. Inference. 2012, 142 1252-1261

[32]

Lu J, Yan Z, Peng X. A new exponential ratio-type estimator with linear combination of two auxiliary variables. PLoS ONE. 2014, 9 12 1-10

[33]

Vishwakarma GK, Kumar M. An efficient class of estimators for the mean of a finite population in two-phase sampling using multi-auxiliary variates. Commun. Math. Stat.. 2015, 3 4 477-489

[34]

Bahl S, Tuteja RK. Ratio and product type exponential estimator. J. Inf. Optim. Sci.. 1991, 12 1 159-164

[35]

Bahl S, Kumar M. Estimation of finite population mean using multi-auxiliary variables. J. Stat. Manag. Syst.. 2000, 3 1 67-74

[36]

Anderson TW. An Introduction to Multivariate Statistical Analysis. 1958 New York: Wiley

[37]

Cochran WG. Sampling Techniques. 1977 3 New York: Wiley

[38]

Sukhatme, B.V., Chand, L.: Multivariate ratio-type estimators. In: Proceedings of American Statistical Association, Social Statistics Section, pp. 927–931 (1977)

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/