PDF
Abstract
Let f(z) be a non-constant meromorphic function of finite order, $c\in \mathbb {C}\setminus \{0\}$ and $k\in \mathbb {N}$. Suppose f(z) and $f^{(k)}(z+c)$ share 1 CM (IM), f(z) and $f(z+c)$ share $\infty $ CM. If $N(r,0;f)=S(r,f) \left( N\left( r,0;f(z)\right) +N\left( r,0;f^{(k)}(z+c)\right) =S(r,f)\right) $, then either $f(z)\equiv f^{(k)}(z+c)$ or f(z) is a solution of the following equation:
$\begin{aligned}&f'(z+c)-1=a(z)\left( f(z)-1\right) \left( f(z)+\frac{1}{a(z)}\right) ,\;\; \hbox {and}\\&\quad N\left( r,0;f(z)+\frac{1}{a(z)}\right) =S(r,f)\\&\quad \left( f'(z+c)-1=a(z)\left( f(z)-1\right) \left( f(z)+\frac{1}{a(z)}\right) \right) \end{aligned}$
where
$a(z)\left( \not \equiv -\,1,0,\infty \right) \left( a(z)\left( \not \equiv 0,\infty \right) \right) $ is a meromorphic function satisfying
$T(r,a)=S(r,f)$. Also we exhibit some examples to show that the conditions of our results are the best possible.
Keywords
Uniqueness
/
Meromorphic function
/
Shift operator
/
Difference polynomial
/
Sharing values
Cite this article
Download citation ▾
Sujoy Majumder.
Meromorphic Functions Sharing One Value with Their Derivatives Concerning the Difference Operator.
Communications in Mathematics and Statistics, 2017, 5(4): 407-427 DOI:10.1007/s40304-017-0119-4
| [1] |
Al-Khaladi AHH. Meromorphic functions that share one finite value CM or IM with their first derivative. J AL-Anbar Univ. Pure Sci.. 2009, 3 69-73
|
| [2] |
Chiang YM, Feng SJ. On the Nevanlinna characteristic $f(z+\eta )$ and difference equations in complex plane. Ramanujan J.. 2008, 16 105-129
|
| [3] |
Frank G, Weissenborn G. Meromorphe Funktionen, die mit einer ihrer Ableitungen Werte teilen. Complex Var.. 1986, 7 33-43
|
| [4] |
Gundersen GG. Meromorphic functions that share finite values with their derivative. J. Math. Anal. Appl.. 1980, 75 441-446
|
| [5] |
Gundersen GG. Meromorphic functions that share two finite values with their derivative. Pacific J. Math.. 1983, 105 299-309
|
| [6] |
Hayman WK. Meromorphic Functions. 1964 Oxford: The Clarendon Press
|
| [7] |
Heittokangas J, Korhonen R, Laine I, Rieppo J, Zhang JL. Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity. J. Math. Anal. Appl.. 2009, 355 352-363
|
| [8] |
Li P, Yang CC. Value sharing of an entire function and its derivatives. J. Math. Soc. Jpn.. 1999, 51 781-799
|
| [9] |
Mues E, Steinmetz N. Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen. Manuscr. Math.. 1979, 29 195-206
|
| [10] |
Rubel, L.A., Yang, C.C.: Values shared by an entire function and its derivative, Lecture Notes in Math., Vol. 599, Springer, New York, pp. 101–103 (1977)
|
| [11] |
Yang CC, Yi HX. Uniqueness Theory of Meromorphic Functions. 2003 Dordrecht: Kluwer Academic Publishers
|
| [12] |
Zhang, J.L., Yang, L.Z.: Some results related to a conjecture of R. Brück, J. Inequal. Pure Appl. Math., 8, Art. 18 (2007)
|
| [13] |
Zheng JH, Wang SP. On unicity properties of meromorphic functions and their derivatives. Adv. Math.. 1992, 21 334-341
|