Modified Bases of PHT-Splines

Yuanpeng Zhu , Falai Chen

Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (4) : 381 -397.

PDF
Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (4) : 381 -397. DOI: 10.1007/s40304-017-0116-7
Article

Modified Bases of PHT-Splines

Author information +
History +
PDF

Abstract

Recently, it was found that during the process of certain refinement of hierarchical T-meshes, some basis functions of PHT-splines decay severely, which is not expected in solving numerical PDEs and in least square data fitting since the matrices assembled by these basis functions are likely to be ill-conditioned. In this paper, we present a method to modify the basis functions of PHT-splines in the case that the supports of the original truncated basis functions are rectangular domains to overcome the decay problem. The modified basis functions preserve the same nice properties of the original PHT-spline basis functions such as partition of unity, local support, linear independency. Numerical examples show that the modified basis functions can greatly decrease the condition numbers of the stiffness matrices assembled in solving Poisson’s equation with Dirichlet boundary conditions.

Keywords

PHT-spline / B-spline / Hierarchical T-mesh / Poisson’s equation

Cite this article

Download citation ▾
Yuanpeng Zhu, Falai Chen. Modified Bases of PHT-Splines. Communications in Mathematics and Statistics, 2017, 5(4): 381-397 DOI:10.1007/s40304-017-0116-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline simplification and local refinement. ACM Trans. Graph.. 2004, 23 276-283

[2]

Dörfel M, Jüttler B, Simeon B. Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng.. 2009, 199 264-275

[3]

Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW. Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng.. 2010, 199 229-263

[4]

Buffa A, Cho D, Sangalli G. Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Methods Appl. Mech. Eng.. 2010, 199 1437-1445

[5]

Scott MA, Li X, Sederberg TW, Hughes TJR. Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng.. 2012, 213–216 206-222

[6]

Li X, Scott MA. Analysis-suitable T-splines: characterization, refineability, and approximation. Math. Models Methods Appl. Sci.. 2014, 24 1141-1164

[7]

Zhang JJ, Li X. On the linear independence and partition of unity of arbitrary degree analysis-suitable T-splines. Commun. Math. Stat.. 2015, 3 353-364

[8]

Forsey D, Bartels R. Hierarchical B-spline refinement. Comput. Graph.. 1988, 22 205-212

[9]

Giannelli C, Jüttler B, Speleers H. THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des.. 2012, 29 485-498

[10]

Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des.. 2013, 30 331-356

[11]

Johannessen KA, Remonato F, Kvamsdal T. On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines. Comput. Methods Appl. Mech. Eng.. 2015, 291 64-101

[12]

Deng JS, Chen FL, Feng YY. Dimensions of spline spaces over T-meshes. J. Comput. Appl. Math.. 2006, 194 267-283

[13]

Deng JS, Chen FL, Li X, Hu CQ, Tong WH, Yang ZW, Feng YY. Polynomial splines over hierarchical T-meshes. Graph. Models. 2008, 70 76-86

[14]

Li X, Deng JS, Chen FL. Surface modeling with polynomial splines over hierarchical T-meshes. Vis. Comput.. 2007, 23 1027-1033

[15]

Tian L, Chen FL, Du Q. Adaptive finite element methods for elliptic equations over hierarchical T-meshes. J. Comput. Appl. Math.. 2011, 236 878-891

[16]

Nguyen-Thanh N, Nguyen-Xuan H, Bordas SPA, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng.. 2011, 200 1892-1908

[17]

Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng.. 2011, 200 3410-3424

[18]

Wang P, Xu JL, Deng JS, Chen FL. Adaptive isogeometric analysis using rational PHT-splines. Comput. Aided Des.. 2011, 43 1438-1448

[19]

Deng F, Zeng C, Deng JS. Boundary-mapping parametrization in isogeometric analysis. Commun. Math. Stat.. 2016, 4 203-216

[20]

Kang HM, Xu JL, Chen FL, Deng JS. A new basis for PHT-splines. Graph. Models. 2015, 82 149-159

Funding

National Natural Science Foundation of China(NO. 11571338)

Postdoctoral Science Foundation of China(2015M571931)

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/