Modified Almost Unbiased Liu Estimator in Linear Regression Model

Sivarajah Arumairajan , Pushpakanthie Wijekoon

Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (3) : 261 -276.

PDF
Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (3) : 261 -276. DOI: 10.1007/s40304-017-0111-z
Article

Modified Almost Unbiased Liu Estimator in Linear Regression Model

Author information +
History +
PDF

Abstract

In this paper, we propose a new biased estimator namely modified almost unbiased Liu estimator by combining almost unbiased Liu estimator (AULE) and ridge estimator (RE) in a linear regression model when multicollinearity presents among the independent variables. Necessary and sufficient conditions for the proposed estimator over the ordinary least square estimator, RE, AULE and Liu estimator (LE) in the mean squared error matrix sense are derived, and the optimal biasing parameters are obtained. To illustrate the theoretical findings, a Monte Carlo simulation study is carried out and a numerical example is used.

Keywords

Multicollinearity / Ridge estimator / Almost unbiased Liu estimator / Liu estimator / Modified almost unbiased Liu estimator / Mean squared error matrix

Cite this article

Download citation ▾
Sivarajah Arumairajan,Pushpakanthie Wijekoon. Modified Almost Unbiased Liu Estimator in Linear Regression Model. Communications in Mathematics and Statistics, 2017, 5(3): 261-276 DOI:10.1007/s40304-017-0111-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akdeniz F, Erol H. Mean squared error matrix comparisons of some biased estimators in linear regression. Commun. Stat. Theory Methods. 2003, 32 2389-2413

[2]

Alheety MI, Kibria BMG. Modified Liu-type estimator based on (r $-$ k) Class Estimator. Commun. Stat. Theory Methods. 2013, 42 304-319

[3]

Arumairajan S, Wijekoon P. Generalized preliminary test stochastic restricted estimator in the linear regression model. Commun. Stat. Theory Methods. 2016, 45 6061-6086

[4]

Arumairajan S, Wijekoon P. Improvement of Ridge estimator when stochastic restrictions are available in the linear regression model. J. Stat. Econom. Methods. 2014, 3 35-48

[5]

Arumairajan S, Wijekoon P. Optimal generalized biased estimator in linear regression model. Open J. Stat.. 2015, 5 403-411

[6]

Farebrother RW. Further results on the mean square error of ridge regression. J. R. Stat. Soc. B. 1976, 38 248-250

[7]

Gruber MHJ. Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators. 1998 New York: Dekker Inc

[8]

Hoerl E, Kennard W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970, 12 55-67

[9]

Kibria BMG. Performance of some new ridge regression estimators. Commun. Stat.. 2003, 32 419-435

[10]

Li Y, Yang H. Two kinds of restricted modified estimators in linear regression model. J. Appl. Stat.. 2011, 38 1447-1454

[11]

Liu K. A new class of biased estimate in linear regression. Commun. Stat. Theory Methods. 1993, 22 393-402

[12]

McDonald C, Galarneau A. A Monte Carlo evaluation of some ridge-type estimators. J. Am. Stat. Assoc.. 1975, 70 407-416

[13]

Newhouse, J.P., Oman, S.D.: An evaluation of ridge estimators. Rand Report, No. R-716-Pr: pp. 1–28 (1971)

[14]

Ozkale RM, Kaçiranlar S. The restricted and unrestricted two parameter estimators. Commun. Stat. Theory Methods. 2007, 36 2707-2725

[15]

Singh B, Chaubey YP, Dwivedi TD. An almost unbiased ridge estimator. Indian J. Stat.. 1986, 48 342-346

[16]

Trenkler G, Toutenburg H. Mean square error matrix comparisons between biased estimators—an overview of recent results. Stat. Pap.. 1990, 31 165-179

[17]

Wang SG . Matrix Inequalities. 2006 2 Beijing: Chinese Science Press

[18]

Yang H, Chang X. A new two parameter estimator in linear regression. Commun. Stat. Theory Methods. 2010, 39 923-934

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/