Estimation Methods for the Generalized Inverted Exponential Distribution Under Type II Progressively Hybrid Censoring with Application to Spreading of Micro-Drops Data

Hanieh Panahi

Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (2) : 159 -174.

PDF
Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (2) : 159 -174. DOI: 10.1007/s40304-017-0106-9
Article

Estimation Methods for the Generalized Inverted Exponential Distribution Under Type II Progressively Hybrid Censoring with Application to Spreading of Micro-Drops Data

Author information +
History +
PDF

Abstract

In this article, we consider the statistical inferences of the unknown parameters of a generalized inverted exponential distribution based on the Type II progressively hybrid censored sample. By applying the expectation–maximization (EM) algorithm, the maximum likelihood estimators are developed for estimating the unknown parameters. The observed Fisher information matrix is obtained using the missing information principle, and it can be used for constructing asymptotic confidence intervals. By applying the bootstrapping technique, the confidence intervals for the parameters are also derived. Bayesian estimates of the unknown parameters are obtained using the Lindley’s approximation. Monte Carlo simulations are implemented and observations are given. Finally, a real data set representing the spread factor of micro-drops is analyzed to illustrative purposes.

Keywords

Bootstrap method / EM algorithm / Generalized inverted exponential / Lindley’s approximation / Micro-drops / Type II progressively hybrid censoring

Cite this article

Download citation ▾
Hanieh Panahi. Estimation Methods for the Generalized Inverted Exponential Distribution Under Type II Progressively Hybrid Censoring with Application to Spreading of Micro-Drops Data. Communications in Mathematics and Statistics, 2017, 5(2): 159-174 DOI:10.1007/s40304-017-0106-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abouammoh AM, Alshingiti AM. Reliability of generalized inverted exponential distribution. J. Stat. Comput. Simul.. 2009, 79 1301-1315

[2]

Afify WM. Theory and methods statistical inference using progressively hybrid censored data under exponentiated exponential distribution with binomial random removals. S. Afr. Stat. J.. 2011, 45 149-170

[3]

Balakrishnan N, Kundu D. Hybrid censoring models, inferential results and applications. Comput. Stat. Data Anal.. 2013, 57 166-209

[4]

Banerjee A, Kundu D. Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Trans. Reliab.. 2008, 57 369-378

[5]

Childs A, Chandrasekhar B, Balakrishnan N, Kundu D. Exact inference based on type-I and type-II hybrid censored samples from the exponential distribution. Ann. Inst. Stat. Math.. 2003, 55 319-330

[6]

Dey S, Pradhan B. Generalized inverted exponential distribution under hybrid censoring. Stat. Methodol.. 2014, 18 101-114

[7]

Dey S, Dey T. Generalized inverted exponential distribution: different methods of estimation. Am. J. Math. Manag. Sci.. 2014, 33 194-215

[8]

Gupta PK, Singh B. Parameter estimation of Lindley distribution with hybrid censored data. Int. J. Syst. Assur. Eng. Manag.. 2012, 1 1-8

[9]

Gürünlü Almaa Ö, Arabi Belaghi R. On the estimation of the extreme value and normal distribution parameters based on progressive type-II hybrid-censored data. J. Stat. Comput. Simul.. 2016, 86 569-596

[10]

Kang CW, Ng HW. Splat morphology and spreading behavior due to oblique impact of droplets onto substrates in plasma spray coating process. Surface Coat. Technol.. 2006, 200 5462-5477

[11]

Krishna H, Kumar K. Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample. J. Stat. Comput. Simul.. 2013, 83 6 1007-1019

[12]

Kundu D, Joarder A. Analysis of type-II progressively hybrid censored data. Comput. Stat. Data Anal.. 2006, 50 2509-2528

[13]

Kundu D, Joarder A. Analysis of type-II progressively hybrid censored competing risks data. J. Mod. Appl. Stat. Methods. 2006, 5 152-170

[14]

Lindley DV. Approximate Bayesian method. Trabajos de Estadistica. 1980, 31 223-245

[15]

Louis TA. Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. B. 1982, 44 226-233

[16]

Panahi H, Sayyareh A. Parameter estimation and prediction of order statistics for the Burr type XII distribution with type II censoring. J. Appl. Stat.. 2014, 41 215-232

[17]

Panahi H, Sayyareh A. Estimation and prediction for a unified hybrid-censored Burr type XII distribution. J. Stat. Comput. Simul.. 2016, 86 55-73

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/