$\sigma $-set,${{{\mathcal {H}}}}$-permutable subgroup,PST-group" /> $\sigma $-set" /> ${{{\mathcal {H}}}}$-permutable subgroup" /> $\sigma $-set,${{{\mathcal {H}}}}$-permutable subgroup,PST-group" />

Finite Groups with ${{{\mathcal {H}}}}$-Permutable Subgroups

Wenbin Guo , Chenchen Cao , Alexander N. Skiba , Darya A. Sinitsa

Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (1) : 83 -92.

PDF
Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (1) : 83 -92. DOI: 10.1007/s40304-017-0101-1
Article

Finite Groups with ${{{\mathcal {H}}}}$-Permutable Subgroups

Author information +
History +
PDF

Abstract

Let $\sigma =\{\sigma _{i}\ |\ i\in I\}$ be some partition of the set $\mathbb {P}$ of all primes and G a finite group. A set ${{{\mathcal {H}}}}$ of subgroups of G is said to be a complete Hall $\sigma $ -set of G if every member $\ne 1$ of ${{{\mathcal {H}}}}$ is a Hall $\sigma _{i}$-subgroup of G for some $i\in I$ and ${{\mathcal {H}}}$ contains exactly one Hall $\sigma _{i}$-subgroup of G for every i such that $\sigma _{i}\cap \pi (G)\ne \emptyset $. A subgroup A of G is said to be ${{\mathcal {H}}}$-permutable if A permutes with all members of the complete Hall $\sigma $-set ${{{\mathcal {H}}}}$ of G. In this paper, we study the structure of G under the assuming that some subgroups of G are ${{\mathcal {H}}}$-permutable.

Keywords

Finite group / Hall subgroup / $\sigma $-set')">Complete Hall $\sigma $-set / ${{{\mathcal {H}}}}$-permutable subgroup')">${{{\mathcal {H}}}}$-permutable subgroup / PST-group

Cite this article

Download citation ▾
Wenbin Guo, Chenchen Cao, Alexander N. Skiba, Darya A. Sinitsa. Finite Groups with ${{{\mathcal {H}}}}$-Permutable Subgroups. Communications in Mathematics and Statistics, 2017, 5(1): 83-92 DOI:10.1007/s40304-017-0101-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of Finite Groups. 2010 Berlin: Walter de Gruyter

[2]

Skiba AN. On $\sigma $-subnormal and $\sigma $-permutable subgroups of finite groups. J. Algebra. 2015, 436 1-16

[3]

Shemetkov LA. Formations of Finite Groups. 1978 Moscow: Nauka, Main Editorial Board for Physical and Mathematical Literature

[4]

Guo, W., Skiba, A.N.: Groups with maximal subgroups of Sylow subgroups $\sigma $-permutably embedded. J. Group Theory. (2016). doi:10.1515/jgth-2016-0032

[5]

Skiba AN. A generalization of a Hall theorem. J. Algebra Appl.. 2016, 15 4 1650085

[6]

Guo, W., Skiba, A.N.: On $\Pi $-quasinormal subgroups of finite groups. Monatsh. Math. (2016). doi:10.1007/s00605-016-1007-9

[7]

Skiba AN. On some results in the theory of finite partially soluble groups. Commun. Math. Stat.. 2016, 4 3 281-309

[8]

Agrawal RK. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Am. Math. Soc.. 1975, 47 77-83

[9]

Schmidt R. Subgroup Lattices of Groups. 1994 Berlin: Walter de Gruyter

[10]

Weinstein, M. (ed.) et al.: Between Nilpotent and Solvable. Polygonal Publishing House, Passaic (1982)

[11]

Huppert B. Zur Sylow struktur auflösbarer Gruppen. Arch. Math.. 1961, 12 161-169

[12]

Asaad M, Heliel AA. On permutable subgroups of finite groups. Arch. Math.. 2003, 80 113-118

[13]

Guo W, Skiba AN. Finite groups with permutable complete Wielandt sets of subgroups. J. Group Theory. 2015, 18 191-200

[14]

Doerk K, Hawkes T. Finite Soluble Groups. 1992 Berlin: Walter de Gruyter

[15]

Guo W. Structure Theory for Canonical Classes of Finite Groups. 2015 Berlin: Springer

[16]

Knyagina BN, Monakhov VS. On $\pi ^{\prime }$-properties of finite groups having a Hall $\pi $-subgroup. Sib. Math. J.. 2011, 522 297-309

[17]

Robinson DJS. A Course in the Theory of Groups. 1982 Berlin: Springer

Funding

National Natural Science Foundation of China(11371335)

Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(2010T2J12)

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/