A Weak Trudinger–Moser Inequality with a Singular Weight on a Compact Riemannian Surface

Xiaobao Zhu

Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (1) : 37 -57.

PDF
Communications in Mathematics and Statistics ›› 2017, Vol. 5 ›› Issue (1) : 37 -57. DOI: 10.1007/s40304-016-0099-9
Article

A Weak Trudinger–Moser Inequality with a Singular Weight on a Compact Riemannian Surface

Author information +
History +
PDF

Abstract

Let $(\Sigma ,g)$ be a compact Riemannian surface, $p_j\in \Sigma $, $\beta _{j}>-1$, for $j=1,\cdots ,m$. Denote $\beta =\min \{0,\beta _1,\cdots ,\beta _{m}\}$. Let $H\in C^0(\Sigma )$ be a positive function and $h(x)=H(x)\left( d_g(x,p_j)\right) ^{2\beta _j}$, where $d_g(x,p_j)$ denotes the geodesic distance between x and $p_j$ for each $j=1,\cdots ,m$. In this paper, using a method of blow-up analysis, we prove that the functional

$\begin{aligned} J(u)=\frac{1}{2}\int _{\Sigma }|\nabla _g u|^2dv_g + 8\pi (1+\beta )\frac{1}{Vol_g(\Sigma )} \int _{\Sigma }udv_g-8\pi (1+\beta ) \log \int _{\Sigma }he^{u}dv_g \end{aligned}$
is bounded from below on the Sobolev space $W^{1,2}(\Sigma ,g)$.

Keywords

Trudinger–Moser inequality / Variational method / Blow-up analysis / Singular weight

Cite this article

Download citation ▾
Xiaobao Zhu. A Weak Trudinger–Moser Inequality with a Singular Weight on a Compact Riemannian Surface. Communications in Mathematics and Statistics, 2017, 5(1): 37-57 DOI:10.1007/s40304-016-0099-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adimurthi, Sandeep K. A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl.. 2007, 13 5–6 585-603

[2]

Adimurthi, Yang Y. An interpolation of Hardy inequality and Trundinger–Moser inequality in ${\mathbb{R}}^N$ and its applications. Int. Math. Res. Not.. 2010, 13 2394-2426

[3]

Aubin T. Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal.. 1979, 32 148-174

[4]

Aubin T. Nonlinear analysis on manifolds. Monge-Ampère equations. 1982 New York: Springer-Verlag

[5]

Bartolucci D, De Marchis F, Malchiodi A. Supercritical conformal metrics on surfaces with conical singularities. Int. Math. Res. Not.. 2011, 24 5625-5643

[6]

Bartolucci D, Malchiodi A. An improved geometric inequality via vanishing moments, with applications to singular Liouville equations. Commun. Math. Phys.. 2013, 322 415-452

[7]

Battaglia L, Malchiodi A. A Moser–Trudinger inequality for the singular Toda system. Bull. Inst. Math. Acad. Sin.. 2014, 9 1-23

[8]

Battaglia L, Malchiodi A. Existence and non-existence results for the SU(3) singular Toda system on compact surfaces. J. Funct. Anal.. 2016, 270 3750-3807

[9]

Berger M. Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds. J. Differ. Geom.. 1971, 5 325-332

[10]

Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions. Commun. Partial Differ. Equ.. 1991, 16 1223-1253

[11]

Caglioti E, Lions PL, Marchioro C, Pulvirenti M. A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys.. 1992, 143 501-525

[12]

Caglioti E, Lions PL, Marchioro C, Pulvirenti M. A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description II. Commun. Math. Phys.. 1995, 174 229-260

[13]

Chang K, Liu J. On Nirenberg’s problem. Int. J. Math.. 1993, 4 35-58

[14]

Chang S-YA, Yang P. Prescribing Gaussian curvature on $S^2$. Acta Math.. 1987, 159 215-259

[15]

Chen W. A Trüdinger inequality on surfaces with conical singularities. Proc. Am. Math. Soc.. 1990, 108 821-832

[16]

Chen W, Ding W. Scalar curvatures on $S^2$. Trans. Am. Math. Soc.. 1987, 303 365-382

[17]

Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math. J.. 1991, 63 615-622

[18]

Chen W, Li C. Prescribing Gaussian curvatures on surfaces with conical singularities. J. Geom. Anal.. 1991, 1 359-372

[19]

Chen W, Li C. Gaussian curvature on singular surfaces. J. Geom. Anal.. 1993, 3 315-334

[20]

Chen W, Li C. What kinds of singular surfaces can admit constant curvature?. Duke Math. J.. 1995, 78 437-451

[21]

Ding W, Jost J, Li J, Wang G. The differential equation $\Delta u=8\pi -8\pi he^u$ on a compact Riemann surface. Asian J. Math.. 1997, 1 230-248

[22]

Ding W, Jost J, Li J, Wang G. Existence results for mean field equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 1999, 16 653-666

[23]

Fontana L. Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv.. 1993, 68 415-454

[24]

Gilbarg D, Trudinger NS. Elliptic partial differential equations of second order. 2001 Berlin: Springer-Verlag

[25]

Kazdan J, Warner F. Curvature functions for compact 2-manifolds. Ann. Math.. 1974, 99 14-47

[26]

Mancini G. Onofri-type inequalities for singular Liouville equations. J. Geom. Anal.. 2016, 26 1202-1230

[27]

Moser J. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J.. 1971, 20 1077-1092

[28]

Picard E. De l’intégration de l’équation $\Delta u=e^u$ sur une surface de Riemann fermée. J. Reine Angew. Math.. 1905, 130 243-258

[29]

Tarantello G. Analytical, geometrical and topological aspects of a class of mean field equations on surfaces. Discret. Contin. Dyn. Syst.. 2010, 28 931-973

[30]

Troyanov M. Prescribing curvature on compact surfaces with conical singularities. Trans. Am. Math. Soc.. 1991, 324 793-821

[31]

Trudinger N. On embeddings into Orlicz spaces and some applications. J. Math. Mech.. 1967, 17 473-484

[32]

Yang Y. A sharp form of the Moser–Trudinger inequality on a compact Riemannian surface. Trans. Am. Math. Soc.. 2007, 359 5761-5776

[33]

Yang Y. Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ.. 2015, 258 3161-3193

[34]

Yang Y. A Trudinger–Moser inequality on a compact Riemannian surface Involving gaussian curvature. J. Geom. Anal.. 2016, 26 4 2893-2913

[35]

Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. (2017). doi:10.1016/j.jfa.2016.12.028

Funding

National Natural Science Foundation of China(11401575)

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/