On m-Embedded Primary Subgroups of Finite Groups

Jia Zhang , Long Miao , Baojun Li

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (4) : 449 -458.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (4) : 449 -458. DOI: 10.1007/s40304-016-0094-1
Article

On m-Embedded Primary Subgroups of Finite Groups

Author information +
History +
PDF

Abstract

Suppose that A is a subgroup of a group G. A is called to be m-embedded in G if G has a subnormal subgroup T and a $\{1\le G\}$-embedded subgroup C such that $G=AT$ and $A\cap T\le C\le A$. In this paper, we shall investigate the structure of finite groups by using m-embedded subgroups and obtain some new characterization about p-supersolvability and generalized hypercentre of finite groups. Some results in Guo and Shum (Arch Math 80:561–569, 2003) , Ramadan et al. (Arch Math 85:203–210, 2005), Tang and Miao (Turk J Math 39:501–506, 2015), and Xu and Zhang (Can Math Bull 57(4):884–889, 2014) are generalized.

Keywords

m-Embedded subgroup / Sylow subgroup / p-Supersolvability / Generalized hypercentre

Cite this article

Download citation ▾
Jia Zhang, Long Miao, Baojun Li. On m-Embedded Primary Subgroups of Finite Groups. Communications in Mathematics and Statistics, 2016, 4(4): 449-458 DOI:10.1007/s40304-016-0094-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballester-Bolinches A, Ezquerro LM, Skiba AN. Local embeddings of some families of subgroups of finite groups. Acta. Math. Sin. (Engl. Ser.). 2009, 6 869-882

[2]

Ballester-Bolinches A, Pedraza-Aguilera MC. On minimal subgroups of finite groups. Acta. Math. Hung.. 1996, 73 4 335-342

[3]

Doerk K, Hawkes T. Finite Solvable Groups. 1992 Berlin: Walter de Gruyter

[4]

Guo W. The Theory of Classes of Groups. 2000 Dordrecht: Kluwer Academic Publishers

[5]

Guo W, Shum KP, Skiba AN. Criterions of supersolvability for products supersolvable groups. Publ. Math. Debr.. 2006, 68 433-449

[6]

Guo W, Skiba AN. Finite groups with systems of $\Sigma $-embedded subgroups. Sci. China Math.. 2011, 9 1909-1926

[7]

Guo W, Skiba AN. Finite groups with generalized Ore supplement conditions for primary subgroups. J. Algebra. 2015, 432 205-227

[8]

Guo X, Wang J, Shum KP. On semi-cover-avoiding maximal subgroups and solvability of finite groups. Commun. Algebra. 2006, 34 3235-3244

[9]

Guo X, Shum KP. On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups. Arch. Math.. 2003, 80 561-569

[10]

Huppert B, Blackburn N. Finite Groups III. 1982 Berlin: Springer-Verlag

[11]

Ore O. Contributions in the theory of groups of finite order. Duke Math. J.. 1939, 5 431-460

[12]

Ramadan M, Ezzat Mohamed M, Heliel AA. On $c$-normality of certain subgroups of prime power order of finite groups. Arch. Math.. 2005, 85 203-210

[13]

Tang J, Miao L. A note on $m$-embedded subgroups of finite groups. Turk. J. Math.. 2015, 39 501-506

[14]

Xu Y, Zhang X. $m$-embedded subgroups and $p$-nilpotency of finite groups. Can. Math. Bull.. 2014, 57 4 884-889

[15]

Weinstein M. Between Nilpotent and Solvable. 1982 Passaic: Polynal Publishing House

Funding

NSFC(11271016)

Qing Lan project of Jiangsu Province

High-level personnel of support program of Yangzhou University

333 high-level personnel training project in Jiangsu Province

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/