How does Diagonal Subgroup Embedding Determine the Structure of a Group?

Shouhong Qiao , Guohua Qian , Yanming Wang

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (4) : 423 -433.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (4) : 423 -433. DOI: 10.1007/s40304-016-0092-3
Article

How does Diagonal Subgroup Embedding Determine the Structure of a Group?

Author information +
History +
PDF

Abstract

Let G be a finite group. Let $D =\{(g, g)| g\in G\}$, the main diagonal subgroup of $G\times G$. In this paper, we consider the suitable generalized normalities or index of D in $G\times G$, some interesting results are obtained.

Keywords

Main diagonal subgroups / Abelian groups / Nilpotent groups / Supersoluble groups / Soluble groups

Cite this article

Download citation ▾
Shouhong Qiao, Guohua Qian, Yanming Wang. How does Diagonal Subgroup Embedding Determine the Structure of a Group?. Communications in Mathematics and Statistics, 2016, 4(4): 423-433 DOI:10.1007/s40304-016-0092-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asaad M, Heliel AA. On permutable subgroups of finite groups. Arch. Math.. 2003, 80 113-118

[2]

Baer R, Kern Der. eine charakteristiche Untergruppe. Compositio. Math.. 1934, 1 254-283

[3]

Ballester-Bolinches A, Pedraza-Aguilera MC. Sufficient conditions for supersolvability of finite groups. J. Pure Appl. Algebra. 1998, 127 113-118

[4]

Ballester-Bolinches A, Esteban-Romero R, Asaad M. Products of finite groups. 2010 Berlin: de Gruyter

[5]

Brewster B, Martinez-Pastor A, Perez-Ramos D. Embedding properties in direct products Groups. 2005 St. Andrews: Springer-Verlag

[6]

Brewster B, Martinez-Pastor A, Perez-Ramos D. Normally embedded subgroups in direct products. J. Group Theory. 2006, 9 323-339

[7]

Doerk K, Hawkes T. Finite soluble groups. 1992 Berlin: de Gruyter

[8]

Evan J. Permutable diagonal-type subgroups of $G\times H$. Glasgow Math. J.. 2003, 45 73-77

[9]

Guo W, Skiba AN, Tang X. On boundary factors and traces of subgroups of finite groups. Commun. Math. Stat.. 2014, 2 349-361

[10]

Guo W, Kondratev AS. Finite minimal non-supersolvable groups decomposable into the product of two normal supersolvable subgroups. Commun. Math. Stat.. 2015, 3 285-290

[11]

Hauck P. Subnormal subgroups in direct products of groups. J. Austral. Math. Soc., (Ser.A). 1987, 42 147-172

[12]

Huppert B. Endliche Gruppen I. 1967 Berlin: Springer-Verlag

[13]

Rose J. Abnormal depth and hypereccentric length in finite soluble groups. Math.Z. 1965, 90 29-40

[14]

Kegel OH. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math.Z. 1962, 78 205-221

[15]

Robinson DJS. A course in the theory of groups. 1980 Berlin: Springer-Verlag

[16]

Schmid P. Subgroups permutable with all sylow subgroups. J. Algebra. 1998, 207 285-293

[17]

Schmidt R. Subgroup lattices of groups. 1991 Berlin: de Gruyter

[18]

Wang Y. C-normality of groups and its properties. J. Algebra. 1996, 180 954-965

Funding

National Natural Science Foundation of China(11201082)

National Natural Science Foundation of China(11471054)

Guangdong Science and Technology Department(Yq2013061)

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/