A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source
Xue Qin , Shumin Li
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (3) : 403 -421.
A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source
For the solution to $\partial ^2_tu(x,t)-\triangle u(x,t)+q(x)u(x,t)=\delta (x,t)$ and $u\mid _{t<0}=0$, consider an inverse problem of determining $q(x), x\in \Omega $ from data $f=u\mid _{S_T}$ and $g=(\partial u/\partial \mathbf {n})\mid _{S_T}$. Here $\Omega \subset \{(x_1,x_2,x_3)\in \mathbb {R}^3\mid x_1>0\}$ is a bounded domain, $S_{T}=\{(x,t)\mid x\in {\partial \Omega },\vert {x}\vert<t<T+\vert {x}\vert \}$, $\mathbf {n}=\mathbf {n}(x)$ is the outward unit normal $\mathbf {n}$ to $\partial \Omega $, and $T>0$. For suitable $T>0$, prove a Lipschitz stability estimation:
Inverse problem / Stability / Carleman estimate / Hyperbolic equation
/
| 〈 |
|
〉 |