A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source

Xue Qin , Shumin Li

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (3) : 403 -421.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (3) : 403 -421. DOI: 10.1007/s40304-016-0091-4
Article

A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source

Author information +
History +
PDF

Abstract

For the solution to $\partial ^2_tu(x,t)-\triangle u(x,t)+q(x)u(x,t)=\delta (x,t)$ and $u\mid _{t<0}=0$, consider an inverse problem of determining $q(x), x\in \Omega $ from data $f=u\mid _{S_T}$ and $g=(\partial u/\partial \mathbf {n})\mid _{S_T}$. Here $\Omega \subset \{(x_1,x_2,x_3)\in \mathbb {R}^3\mid x_1>0\}$ is a bounded domain, $S_{T}=\{(x,t)\mid x\in {\partial \Omega },\vert {x}\vert<t<T+\vert {x}\vert \}$, $\mathbf {n}=\mathbf {n}(x)$ is the outward unit normal $\mathbf {n}$ to $\partial \Omega $, and $T>0$. For suitable $T>0$, prove a Lipschitz stability estimation:

$\begin{aligned} \left\| {q_1-q_2}\right\| _{L^2(\Omega )}\le C\left\{ \left\| {f_1-f_2}\right\| _{H^1(S_T)}+\left\| {g_1-g_2} \right\| _{L^2(S_T)}\right\} , \end{aligned}$
provided that $q_1$ satisfies a priori uniform boundedness conditions and $q_2$ satisfies a priori uniform smallness conditions, where $u_k$ is the solution to problem (1.1) with $q = q_k, k = 1, 2$.

Keywords

Inverse problem / Stability / Carleman estimate / Hyperbolic equation

Cite this article

Download citation ▾
Xue Qin, Shumin Li. A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source. Communications in Mathematics and Statistics, 2016, 4(3): 403-421 DOI:10.1007/s40304-016-0091-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams RA. Sobolev Spaces. 1975 New York: Academic Press

[2]

Baudouin L, De Buhan M, Ervedoza S. Global Carleman estimates for waves and applications. Commun. Partial Differ. Equ.. 2013, 38 823-859

[3]

Beilina L, Klibanov MV. Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. 2012 New York: Springer

[4]

Bukhgeim AL, Klibanov MV. Global uniqueness of a class of multidimensional inverse problems. Sov. Math. Dokl.. 1981, 24 244-247

[5]

Cipolatti R, Lopez IF. Determination of coefficients for a dissipative wave equation via boundary measurements. J. Math. Anal. Appl.. 2005, 306 317-329

[6]

Glushkova DI. Stability estimates for the inverse problem of finding the absorption constant. Differ. Equ.. 1976, 37 1261-1270

[7]

Glushkova DI, Romanov VG. A stability estimate for a solution to the problem of determination of two coeffients of a hyperbolic equation. Sib. Math. J.. 2003, 44 250-259

[8]

Imanuvilov OI, Yamamoto M. Global uniqueness and stability in determining coeddicients of wave equations. Commun. Partial Differ. Equ.. 2001, 26 1409-1425

[9]

Imanuvilov OI, Yamamoto M. Determination of a coefficient in an acoustis equation with a single measurement. Inverse Probl.. 2003, 19 1409-1425

[10]

Isakov V. A nonhyperbolic Cauchy problem for $\Box _b\Box _c$, and its applications to elasticity theory. Commun. Pure Appl. Math.. 1986, 39 747-767

[11]

Isakov V. Inverse Problems for Partial Differential Equations. 2006 Berlin: Springer

[12]

Isakov, V.: An inverse problem for the dynamical Lamé system with two sets of local boundary data. In: Control Theroy of Parital Differential Equations. Chapman and Hall/CRC 101-110 (2005)

[13]

Khaidarov A. On stability estimates in multidimensional inverse problems for differential equations. Sov. Math. Dokl.. 1989, 38 614-617

[14]

Klibanov MV. Inverse problems and Carleman estimates. Inverse Probl.. 1992, 8 575-596

[15]

Klibanov MV. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl.. 2013, 21 477-560

[16]

Klibanov MV, Timonov A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. 2004 Boston: VSP Utrecht

[17]

Li S. Estimation of coefficients in a hyperbolic equation with impulsive inputs. J. Inverse Ill-Posed Probl.. 2006, 14 891-904

[18]

Romanov VG. Inverse Problems of Mathematical Physics. 1987 Boston: VSP Utrecht

[19]

Romanov VG. On a stability estimate for a solution to an inverse problem for a hyperbolic equation. Sib. Math. J.. 1998, 39 381-393

[20]

Romanov VG. A stability estimates of a solution of the inverse problem of the sound speed determination. Sib. Math. J.. 1999, 40 1119-1133

[21]

Romanov VG. A stability estimate for a problem of determination of coefficients under the first derivatives in the second type hyperbolic equation. Dokl. Math.. 2000, 62 459-461

[22]

Romanov VG. Investigation Methods for Inverse Problems. 2002 Boston: VSP Utrecht

[23]

Romanov VG, Yamamoto M. Multidimensional inverse problem with impulse input and a single boundary measurement. J. Inverse Ill-Posed Probl.. 1999, 7 573-588

[24]

Romanov VG, Yamamoto M. On the determination of wave speed and potential in a hyperbolic equation by two measurements. Contemp. Math.. 2004, 348 1-10

[25]

Romanov VG, Yamamoto M. On the determination of the sound speed and a damping coefficient by two measurements. Appl. Anal.. 2005, 84 1025-1039

[26]

Sun Z. On continuous dependence for an inverse initial boundary value problem for the wave equation. J. Math. Anal. Appl.. 1990, 150 188-204

[27]

Yamamoto M. Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl.. 1999, 78 65-98

Funding

University of Science and Technology of China(YZ3471500002)

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/