PDF
Abstract
Consider the following nonlocal integro-differential operator: for $\alpha \in (0,2)$,
$\begin{aligned} {\mathcal {L}}^{(\alpha )}_{\sigma ,b} f(x):=\text{ p.v. } \int _{{\mathbb {R}}^d-\{0\}}\frac{f(x+\sigma (x)z)-f(x)}{|z|^{d+\alpha }}{\mathord {\mathrm{d}}}z+b(x)\cdot \nabla f(x), \end{aligned}$
where
$\sigma {:}{\mathbb {R}}^d\rightarrow {\mathbb {R}}^d\otimes {\mathbb {R}}^d$ and
$b{:}{\mathbb {R}}^d\rightarrow {\mathbb {R}}^d$ are smooth and have bounded first-order derivatives, and p.v. stands for the Cauchy principal value. Let
$B_1(x):=\sigma (x)$ and
$B_{j+1}(x):=b(x)\cdot \nabla B_j(x)-\nabla b(x)\cdot B_j(x)$ for
$j\in {\mathbb {N}}$. Under the following Hörmander’s type condition: for any
$x\in {\mathbb {R}}^d$ and some
$n=n(x)\in {\mathbb {N}}$,
$\begin{aligned} {\mathrm {Rank}}[B_1(x), B_2(x),\ldots , B_n(x)]=d, \end{aligned}$
by using the Malliavin calculus, we prove the existence of the heat kernel
$\rho _t(x,y)$ to the operator
${\mathcal {L}}^{(\alpha )}_{\sigma ,b}$ as well as the continuity of
$x\mapsto \rho _t(x,\cdot )$ in
$L^1({\mathbb {R}}^d)$ as a density function for each
$t>0$. Moreover, when
$\sigma (x)=\sigma $ is constant and
$B_j\in C^\infty _b$ for each
$j\in {\mathbb {N}}$, under the following uniform Hörmander’s type condition: for some
$j_0\in {\mathbb {N}}$,
$\begin{aligned} \inf _{x\in {\mathbb {R}}^d}\inf _{|u|=1}\sum _{j=1}^{j_0}|u B_j(x)|^2>0, \end{aligned}$
we also show the smoothness of
$(t,x,y)\mapsto \rho _t(x,y)$ with
$\rho _t(\cdot ,\cdot )\in C^\infty _b({\mathbb {R}}^d\times {\mathbb {R}}^d)$ for each
$t>0$.
Keywords
60H07
/
60H10
/
60H30
Cite this article
Download citation ▾
Xicheng Zhang.
Fundamental Solutions of Nonlocal Hörmander’s Operators.
Communications in Mathematics and Statistics, 2016, 4(3): 359-402 DOI:10.1007/s40304-016-0090-5
| [1] |
Alexandre R. Fractional order kinetic equations and hypoellipticity. Anal. Appl.. 2012, 10 03 237-247
|
| [2] |
Alexandre R, Morimoto Y, Ukai S, Xu CJ, Yang T. Uncertainty principle and kinetic equations. J. Func. Anal.. 2008, 255 2013-2066
|
| [3] |
Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics. 2004 Cambridge: Cambridge University Press
|
| [4] |
Bally, V., Caramellino, L.: On the distance between probability density functions. Electron. J. Probab. 19(110), 1–33 (2014)
|
| [5] |
Bichteler K, Gravereaux JB, Jacod J. Malliavin Calculus for Processes with Jumps. 1987 Philadelphia: Gordon and Breach Science Publishers
|
| [6] |
Bismut JM. Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete. 1981, 56 469-505
|
| [7] |
Bismut JM. Calcul des variations stochastiques et processus de sauts. Z. Wahrsch. Verw. Gebiete. 1983, 63 147-235
|
| [8] |
Bogachev VI. Differential Measures and the Malliavin Calculus. 2010 Providence: AMS
|
| [9] |
Carmona P. Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stoch. Process. Appl.. 2007, 117 8 1076-1092
|
| [10] |
Cass T. Smooth densities for stochastic differential equations with jumps. Stoch. Proc. Appl.. 2009, 119 5 1416-1435
|
| [11] |
Chen H, Li WX, Xu CJ. Gevrey hypoellipticity for a class of kinetic equations. Commun. Partial Differ. Equ.. 2011, 36 693-728
|
| [12] |
Dong, Z., Peng, X., Song, Y., Zhang, X.: Strong Feller properties for degenerate SDEs with jumps. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 52(2), 888–897 (2016)
|
| [13] |
Eckmann JP, Hairer M. Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys.. 2000, 212 1 105-164
|
| [14] |
Hörmander L. Hypoelliptic second order differential equations. Acta Math.. 1967, 119 147-171
|
| [15] |
Ishikawa Y, Kunita H. Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps. Stoch. Process. Appl.. 2006, 116 1743-1769
|
| [16] |
Komatsu T, Takeuchi A. Simplified probabilistic approach to the Hörmander theorem. Osaka J. Math.. 2001, 38 681-691
|
| [17] |
Komatsu T, Takeuchi A. On the smoothness of PDF of solutions to SDE with jumps. Int. J. Differ. Equ. Appl.. 2001, 2 141-197
|
| [18] |
Kulik A. Conditions for existence and smoothness of the distribution density for Ornstein–Uhlenbeck processes with Lévy noises. Theory Probab. Math. Statist.. 2009, 79 23-38
|
| [19] |
Kunita H. Smooth density of canonical stochastic differential equation with jumps. Astérisque No.. 2010, 327 69-91
|
| [20] |
Kunita H. Nondegenerate SDEs with jumps and their hypoelliptic properties. J. Math. Soc. Jpn.. 2013, 65 3 687-1035
|
| [21] |
Kusuoka S. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J. Math.. 2009, 50 3 491-520
|
| [22] |
Kusuoka, S., Stroock, D.: Applications of the Malliavin Calculus, Part I. Stochastic Analysis. In: Proceedings of the Taniguchi International Symposium on Stochastic Analysis North-Holland Mathematical Library, vol. 32, pp. 271–306 (1984)
|
| [23] |
Kusuoka S, Stroock D. Applications of the Malliavin calculus. Part II. J. Fac. Sci. Univ. of Tokyo. 1985, 32 1 1-76
|
| [24] |
Malicet D, Poly G. Properties of convergence in Dirichlet structures. J. Funct. Anal.. 2013, 264 2077-2096
|
| [25] |
Malliavin. P.: Stochastic calculus of variations and hypoelliptic operators. In: Proceedings of International Symposium on Stochastic Differential Equations, Kyoto, pp. 195–263 (1976)
|
| [26] |
Morimoto Y, Xu CJ. Hypoellipticity for a class of kinetic equations. J. Math. Kyoto Univ.. 2007, 47–1 129-152
|
| [27] |
Norris, J.: Simplified Malliavin calculus. In: Seminaire de Probabilités XX, Lecture Notes in Mathematics, vol. 1204. Springer, Berlin, pp. 101–130 (1986)
|
| [28] |
Nualart D. The Malliavin Calculus and Related Topics. 2006 New York: Springer
|
| [29] |
Picard J. On the existence of smooth densities for jump processes. Probab. Theory Relat. Fields. 1996, 105 481-511
|
| [30] |
Priola E, Zabczyk J. Densities for Ornstein–Uhlenbeck processes with jumps. Bull. Lond. Math. Soc.. 2009, 41 41-50
|
| [31] |
Protter PE. Stochastic Integration and Differential Equations. 2004 2 Berlin: Springer
|
| [32] |
Rey-Bellet L, Thomas LE. Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators. Commun. Math. Phys.. 2000, 215 1 1-24
|
| [33] |
Sato K. Lévy Processes and Infinite Divisible Distributions. 1999 Cambridge: Cambridge University Press
|
| [34] |
Simon T. On the absolute continuity of multidimensional Ornstein–Uhlenbeck processes. Probab. Theory Relat. Fields. 2011, 151 1–2 173-190
|
| [35] |
Takeuchi A. The Malliavin calculus for SDE with jumps and the partially hypoelliptic problem. Osaka J. Math.. 2002, 39 523-559
|
| [36] |
Watanabe S. Lectures on Stochastic Differential Equations and Malliavin Calculus. Tata Institute of Fundamental Research. 1984 Berlin: Springer
|
| [37] |
Wang FY, Xu L, Zhang X. Gradient estimates for SDEs driven by multiplicative Lévy noise. J. Funct. Anal.. 2015, 269 3195-3219
|
| [38] |
Wang FY, Wang J. Harnack inequalities for stochastic equations driven by Lévy noise. J. Math. Anal. Appl.. 2014, 410 1 513-523
|
| [39] |
Zaslavsky GM. The Physics of Chaos in Hamiltonian Systems. 2007 Singapore: World Scientific Publishing
|
| [40] |
Zhang X. Derivative formula and gradient estimate for SDEs driven by $\alpha $-stable processes. Stoch. Proc. Appl.. 2013, 123 4 1213-1228
|
| [41] |
Zhang X. Densities for SDEs driven by degenerate $\alpha $-stable processes. Ann. Prob.. 2014, 42 5 1885-1910
|
| [42] |
Zhang X. Fundamental solution of kinetic Fokker–Planck operator with anisotropic nonlocal dissipativity. SIAM J. Math. Anal.. 2014, 46 3 2254-2280
|
| [43] |
Zhang, X.: Fundamental solutions of nonlocal Hörmander’s operators II. Ann. Probab. doi:10.1214/16-AOP1102
|