Some Special Families of Rank-2 Representations of $\pi _1$ of Compact Riemann Surfaces

Ruiran Sun

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 265 -279.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 265 -279. DOI: 10.1007/s40304-016-0085-2
Article

Some Special Families of Rank-2 Representations of $\pi _1$ of Compact Riemann Surfaces

Author information +
History +
PDF

Abstract

In this article, we give an explicit way to construct representations of the fundamental group $\pi _1(X),$ where X is a hyperbolic curve over $\mathbb {C}.$ Our motivation is to study a special space in $M_\mathrm{DR}(X,\,\mathrm {SL}_2(\mathbb {C}))$ which is called the space of permissible connections in Faltings (Compos Math 48(2):223–269, 1983), or indigenous bundles in Gunning (Math Ann 170:67–86, 1967). We get representations by constructing Higgs bundles, and we show that the family we get intersects the space of permissible connections $\mathbf {PC}$ in a positive dimension. In this way, we actually get a deformation of the canonical representation in $\mathbf {PC},$ and all these deformations are given by explicit constructed Higgs bundles. We also estimate the dimension of this deformation space.

Keywords

Higgs bundle / Representations of fundamental group / Deformation of Higgs bundle

Cite this article

Download citation ▾
Ruiran Sun. Some Special Families of Rank-2 Representations of $\pi _1$ of Compact Riemann Surfaces. Communications in Mathematics and Statistics, 2016, 4(2): 265-279 DOI:10.1007/s40304-016-0085-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Faltings G. Real projective structures on Riemann surfaces. Compos. Math.. 1983, 48 2 223-269

[2]

Fantechi, B., Gottsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistoli, A.: Fundamental algebraic geometry. In: Mathematical Surveys and Monographs, vol. 123. American Mathematical Society, Providence (2005, Grothendieck’s FGA explained)

[3]

Gunning RC. Special coordinate coverings of Riemann surfaces. Math. Ann.. 1967, 170 67-86

[4]

Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

[5]

Hitchin NJ. The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3). 1987, 55 1 59-126

[6]

Mochizuki, S.: An introduction to $p$-adic Teichmüller theory. Cohomologies $p$-adiques et applications arithmetiques, I. Astérisque (278), 1–49 (2002)

[7]

Simpson, C.: The Hodge filtration on nonabelian cohomology. In: Algebraic Geometry—Santa Cruz 1995, Proceedings of the Symposium on Pure Mathematics, vol. 62, pp. 217–281. American Mathematical Society, Providence (1997). doi:10.1090/pspum/062.2/1492538

[8]

Weil A. Généralisation des fonctions abéliennes. J. Math. Pures Appl.. 1938, 17 9 47-87

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/