Self-Normalized Moderate Deviation and Laws of the Iterated Logarithm Under G-Expectation

Li-Xin Zhang

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 229 -263.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 229 -263. DOI: 10.1007/s40304-015-0084-8
Article

Self-Normalized Moderate Deviation and Laws of the Iterated Logarithm Under G-Expectation

Author information +
History +
PDF

Abstract

The sub-linear expectation or called G-expectation is a non-linear expectation having advantage of modeling non-additive probability problems and the volatility uncertainty in finance. Let $\{X_n;n\ge 1\}$ be a sequence of independent random variables in a sub-linear expectation space $(\Omega , \mathscr {H}, \widehat{\mathbb {E}})$. Denote $S_n=\sum _{k=1}^n X_k$ and $V_n^2=\sum _{k=1}^n X_k^2$. In this paper, a moderate deviation for self-normalized sums, that is, the asymptotic capacity of the event $\{S_n/V_n \ge x_n \}$ for $x_n=o(\sqrt{n})$, is found both for identically distributed random variables and independent but not necessarily identically distributed random variables. As an application, the self-normalized laws of the iterated logarithm are obtained. A Bernstein’s type inequality is also established for proving the law of the iterated logarithm.

Keywords

Non-linear expectation / Capacity / Self-normalization / Law of the iterated logarithm / Moderate deviation

Cite this article

Download citation ▾
Li-Xin Zhang. Self-Normalized Moderate Deviation and Laws of the Iterated Logarithm Under G-Expectation. Communications in Mathematics and Statistics, 2016, 4(2): 229-263 DOI:10.1007/s40304-015-0084-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Strassen, V.: A converse to the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 4, 265–268 (1966)

[2]

Griffin, P., Kuelbs, J.: Self-normalized laws of the iteratedlogarithm. Ann. Probab. 17, 1571–1601 (1989)

[3]

Shao QM. Self-normalized large deviations. Ann. Probab.. 1997, 25 285-328

[4]

Cramér, H.: Sur un nouveaux théoréme limite de la théorie des probabilités. Actualités Sci. Indust. 736, 5–23 (1938)

[5]

Petrov, V.V.: Sums of Independent Random Variables. Springer, New York (1975)

[6]

Peng, S.G.: G-expectation, G-Brownian motion and related stochastic calculus of Ito type. In: Proceedings of the 2005 Abel Symposium (2006)

[7]

Peng SG. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stoch. Process. Appl.. 2008, 118 12 2223-2253

[8]

Peng, S.G.: A new central limit theorem under sublinear expectations. Preprint: arXiv:0803.2656v1 [math.PR] (2008b)

[9]

Yan D, Hutz M, Soner HM. Weak approximation of G-expectations. Stoch. Process. Appl.. 2012, 122 2 664-675

[10]

Nutz M, van Handel R. Constructing sublinear expectations on path space. Stoch. Process. Appl.. 2013, 123 8 3100-3121

[11]

Peng SG. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A. 2009, 52 7 1391-1411

[12]

Peng, S.G.: Nonlinear Expectations and Stochastic Calculus under Uncertainty. arXiv:1002.4546 [math.PR] (2010a)

[13]

Gao, F.Q., Xu, M.Z.: Large deviations and moderate deviations for independent random variables under sub-linear expectations. Sci. Sin. Math. 41, 337–352 (2011) (in Chinese)

[14]

Gao, F.Q., Xu, M.Z.: Relative entropy and large deviations under sub-linear expectations. Acta Math. Sci. 32B, 1826–1834 (2012)

[15]

Chen, Z.J., Hu, F.: A law of the iterated logarithm for sublinear expectations. J. Financ. Eng. 1, No. 02. arXiv: 1103.2965v2 [math.PR] (2014)

[16]

Zhang LX. Donsker’s invariance principle under the sub-linear expectation with an application to Chung’s law of the iterated logarithm. Commun. Math. Stat.. 2015, 3 2 187-214

[17]

Petrov VV. On the probabilities of large deviations for sums of independent random variables. Theory Probab. Appl.. 1965, 10 287-298

[18]

Zhang, L.X.: Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Sci. China Math. 59(4), 751–768 (2016)

[19]

Shao QM. Cramér-type large deviation for Student’s t statistic. J. Theor. Probab.. 1999, 12 387-398

[20]

Jing BY, Shao QM, Wang QY. Self-normalized Cramér-type largedeviations for independent random variables. Ann. Probab.. 2003, 31 2167-2215

[21]

Dembo J, Zeitouni O. Large Deviations Techniques and Applications. 1998 2 New York: Springer

[22]

Peng, S.G.: Tightness, weak compactness of nonlinear expectations and application to CLT. arXiv:1006.2541 [math.PR] (2010b)

[23]

Denis, L., Hu, M.S., Peng, S.G.: Function spaces and capacity related to a sublinear expectation: application to G-Brownian Motion Pathes. Potential Anal. 34, 139–161. arXiv:0802.1240v1 [math.PR] (2011)

Funding

National Natural Science Foundation of China(11225104)

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/