Boundary-Mapping Parametrization in Isogeometric Analysis

Fang Deng , Chao Zeng , Jiansong Deng

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 203 -216.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 203 -216. DOI: 10.1007/s40304-015-0082-x
Article

Boundary-Mapping Parametrization in Isogeometric Analysis

Author information +
History +
PDF

Abstract

In isogeometric analysis (IGA), parametrization is an important and difficult issue that greatly influences the numerical accuracy and efficiency of the numerical solution. One of the problems facing the parametrization in IGA is the existence of the singular points in the parametrization domain. To avoid producing singular points, boundary-mapping parametrization is given by mapping the computational domain to a polygon domain which may not be a square domain and mapping each segment of the boundary in computational domain to a corresponding boundary edge of the polygon. Two numerical examples in finite element analysis are presented to show the novel parametrization is efficient.

Keywords

Isogeometric analysis / Finite element analysis / PHT-splines / Parametrization

Cite this article

Download citation ▾
Fang Deng, Chao Zeng, Jiansong Deng. Boundary-Mapping Parametrization in Isogeometric Analysis. Communications in Mathematics and Statistics, 2016, 4(2): 203-216 DOI:10.1007/s40304-015-0082-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept volume parametrization for isogeometric analysis. Mathematics of Surfaces XIII, Lecture Notes in Computer Science.5654, 19–44, (2009)

[2]

Auricchio F, Beiráo da Veiga L, Buffa A, Lovadina C, Reali A, Sangalli G. A fully ”locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng.. 2007, 197 160-172

[3]

Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR. Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Eng.. 2010, 199 276-289

[4]

Buffa A, Sangalli G, Vázquez R. Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng.. 2010, 199 1143-1152

[5]

Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF. Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2010, 199 334-356

[6]

Cottrell JA, Reali A, Bazilevs Y, Hughes TJR. Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng.. 2006, 195 5257-5296

[7]

Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. 2009 Chichester: Wiley

[8]

Deng JS, Chen FL, Li X, Hu CQ, Tong WH, Yang ZW, Feng YY. Polynomial splines over hierarchical T-meshes. Graph. Models. 2008, 70 76-86

[9]

Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des.. 2013, 30 331-356

[10]

Farin G. Curves and Surfaces for CAGD-A Practical Guide. 2002 5 Los Altos, CA: Morgan Kaufmann Publishers

[11]

Forsey DR, Bartels RH. Hierarchical B-spline refinement. Comput. Graph.. 1988, 22 205-212

[12]

Gómez H, Calo VM, Bazilevs Y, Hughes TJR. Isogemetric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng.. 2008, 197 4333-4352

[13]

Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

[14]

Kiendl J, Bletzinger K-U, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng.. 2009, 198 3902-3914

[15]

Martin T, Cohen E, Kirby M. Volumetric parametrization and trivariate b-spline fitting using harmonic functions. Comput. Aided Geom. Des.. 2009, 26 648-664

[16]

Martin T, Cohen E. Volumetric parametrization of complex objects by respecting multiple materials. Comput. Graph.. 2010, 34 187-197

[17]

Scott MA, Li X, Sederberg TW, Hughes TJR. Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng.. 2012, 213 206-222

[18]

Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T- NURCCSs. ACM Trans. Graph.. 2003, 22 477-484

[19]

Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline simplification and local refinement. ACM Trans. Graph.. 2004, 23 276-283

[20]

Seo Y-D, Kim H-J, Youn S-K. Shape optimization and its extension to topological design based on isogeometric analysis. Int. J. Solids Struct.. 2010, 47 1618-1640

[21]

Takacs T, Jttler B. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2011, 200 3568-3582

[22]

Wall WA, Frenzel MA, Cyron C. Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng.. 2008, 197 2976-2988

[23]

Xu G, Mourrain B, Duvigneau R, Galligo A. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method. J. Comput. Phys.. 2013, 252 275-289

[24]

Xu G, Mourrain B, Duvigneau R, Galligo A. Parametrization of computational domain in isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng.. 2011, 200 2021-2031

[25]

Xu, J., Chen, F., Deng, J.: Two-dimensional domain decomposition based on skeleton computation for parametrization and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 541–555 (2015)

[26]

Zhang J, Li X. On the linear independence and partition of unity of arbitrary degree analysis-suitable T-splines. Commun. Math Stat.. 2015, 3 3 353-364

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/