Extended Modules and Ore Extensions

Viacheslav Artamonov , Oswaldo Lezama , William Fajardo

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 189 -202.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 189 -202. DOI: 10.1007/s40304-015-0081-y
Article

Extended Modules and Ore Extensions

Author information +
History +
PDF

Abstract

In this paper, we study extended modules for a special class of Ore extensions. We will assume that R is a ring and A will denote the Ore extension $A:=R[x_1,\ldots ,x_n;\sigma ]$ for which $\sigma $ is an automorphism of R, $x_ix_j=x_jx_i$ and $x_ir=\sigma (r)x_i$, for every $1\le i,j\le n$. With some extra conditions over the ring R, we will prove Vaserstein’s, Quillen’s patching, Horrocks’, and Quillen–Suslin’s theorems for this type of non-commutative rings.

Keywords

Extended modules and rings / Quillen–Suslin’s methods / Ore extensions

Cite this article

Download citation ▾
Viacheslav Artamonov, Oswaldo Lezama, William Fajardo. Extended Modules and Ore Extensions. Communications in Mathematics and Statistics, 2016, 4(2): 189-202 DOI:10.1007/s40304-015-0081-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Universidad Nacional de Colombia.(HERMES CODE 26872)

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/