Lectures on Hodge Theory and Algebraic Cycles

James D. Lewis

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 93 -188.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (2) : 93 -188. DOI: 10.1007/s40304-015-0080-z
Article

Lectures on Hodge Theory and Algebraic Cycles

Author information +
History +
PDF

Abstract

Notes for a mini course at the University of Science and Technology of China in Hefei, China, June 23–July 12, 2014.

Keywords

Chow group / Hodge theory / Algebraic cycle / Regulator / Deligne cohomology / Beilinson–Hodge conjecture / Abel–Jacobi map / Bloch–Beilinson filtration

Cite this article

Download citation ▾
James D. Lewis. Lectures on Hodge Theory and Algebraic Cycles. Communications in Mathematics and Statistics, 2016, 4(2): 93-188 DOI:10.1007/s40304-015-0080-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arapura D. The Leray spectral sequence is motivic. Invent. Math.. 2005, 160 3 567-589

[2]

Arapura D, Kumar M. Beilinson-Hodge cycles on semiabelian varieties. Math. Res. Lett.. 2009, 16 4 557-562

[3]

Angel, P.L., Lewis, J.D. et al.: A going-up theorem for $K$-theory and normal functions. Manuscript in progress

[4]

Asakura, M.: Motives, de Rham, algebraic: cohomology. In: Gordon, B., Lewis, J., Müller-Stach, S., Saito, S., Yui, N. (eds.) The Arithmetic and Geometry of Algebraic Cycles, Proceedings of the CRM Summer School, 7–19 June, 1998, Banff, Alberta. NATO Science Series, vol. 548. Kluwer Academic Publishers, Berlin (2000)

[5]

Asakura, M.: On $d\log $ of elliptic surface minus singular fibers, preprint (2006). arXiv:math/0511190v4

[6]

Asakura, M., Saito, S.: Beilinson’s Hodge conjecture with coefficients. In: Nagel, J., Peters, C. (eds.) Algebraic Cycles and Motives. LNS, vol. 344, pp. 3–37. London Mathematical Society, London (2007)

[7]

Bass, H., Tate, J.: The Milnor ring of a global field. In: Algebraic $K$-theory II. Lecture Notes in Math, vol. 342, pp. 349–446. Springer-Verlag, New York (1972)

[8]

Beilinson, A.: Notes on absolute Hodge cohomology. In: Applications of Algebraic $K$-Theory to Algebraic Geometry and Number Theory. Contemporary Mathematics 55, part 1, pp. 35–68. AMS, Providence (1986)

[9]

Beilinson. Higher regulators and values of $L$-functions. J. Sov. Math.. 1985, 30 2036-2070

[10]

Bloch S, Srinivas V. Remarks on correspondences and algebraic cycles. Am. J. Math.. 1983, 105 1235-1253

[11]

Bloch S. Algebraic cycles and higher $K$-theory. Adv. Math.. 1986, 61 267-304

[12]

Bloch S. Algebraic cycles and the Beilinson conjectures. Contemp. Math.. 1986, 58 Part I 65-79

[13]

Bloch S, Ogus A. Gersten’s conjecture and the homology of schemes. Ann. Sci.. 1974, 7 2 181-201

[14]

Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Annales scientifiques de l’É.N.S. $4^e$ série, tome 7(2), 181–201 (1974)

[15]

Kerr, M., Lewis, J.D., Lopatto, P.: Simplicial Abel-Jacobi maps and reciprocity laws, preprint (2015). arXiv:1502.05459

[16]

Burgos J. A $C^{\infty }$ logarithmic Dolbeault complex. Compositio Math.. 1994, 92 1 61-86

[17]

Chen X, Lewis JD. Noether–Lefschetz for $K_1$ of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3). 2004, 10 1 29-41

[18]

Chen X, Lewis JD. Density of rational curves on $K3$ surfaces. Math. Ann.. 2013, 356 1 331-354

[19]

Chen X, Lewis JD. The Hodge$-{{\cal D}}-$conjecture for $K3$ and Abelian surfaces. J. Algebraic Geom.. 2005, 14 2 213-240

[20]

Chen X, Lewis JD. Noether–Lefschetz for $K_1$ of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3). 2004, 10 1 29-41

[21]

Clemens CH. Homological equivalence, modulo algebraic equivalence is not finitely generated. Publ. IHES. 1983, 58 19-38

[22]

Clemens CH. Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. IHES. 1983, 58 19-38

[23]

Collino A. Griffiths’ infinitesimal invariant and higher $K$-theory on hyperelliptic jacobians. J. Algebraic Geometry. 1997, 6 393-415

[24]

Collino, A.: Indecomposable motivic cohomology classes on quartic surfaces and on cubic fourfolds. Algebraic $K$-Theory and Its Applications (Trieste, 1997), pp. 370–402. World Scientific Publishing, River Edge (1999)

[25]

Collino A, Fakhruddin N. Indecomposable higher Chow cycles on Jacobians. Math. Z.. 2002, 240 1 111-139

[26]

Coombes K, Srinivas V. A remark on $K_1$ of an algebraic surface. Math. Ann.. 1983, 265 335-342

[27]

de Jeu, R., Lewis, J.D (with an appendix by M. Asakura): Beilinson’s Hodge conjecture for smooth varieties. J K-Theory 11(2), 243–282 (2013)

[28]

de Jeu, R., Lewis, J.D., Patel, D.: A relative version of the Beilinson-Hodge conjecture. In: Kerr, M., Pearlstein, G. (eds.) Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic. Cambridge University Press, Cambridge (to appear)

[29]

Deligne P. Théorie de Hodge, II. Inst. Hautes Études Sci. Publ. Math.. 1971, 40 5-57

[30]

Deligne P. Théorie de Hodge, III. Inst. Hautes Études Sci. Publ. Math.. 1974, 44 5-77

[31]

Esnault H, Paranjape KH. Remarks on absolute de Rham and absolute Hodge cycles. C. R. Acad. Sci. Paris, t. 1994, 319 Serie I 67-72

[32]

Esnault H, Viehweg E. Rapoport M, Schappacher N, Schneider P. Deligne–Beilinson cohomology. Beilinson’s Conjectures on Special Values of $L$-Functions. 1988 New York: Academic Press. 43-91

[33]

Elbaz-Vincent P, Müller-Stach S. Milnor $K$-theory of rings, higher Chow groups and applications. Invent. Math.. 2002, 148 177-206

[34]

Gordon, B.B., Lewis, J.D.: Indecomposable higher Chow cycles. In: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), vol. 548, pp. 193–224. Nato Science Series C: - Mathematical and Physical Sciences, vol. 548. Kluwer Academic Publication, Dordrecht (2000)

[35]

Green, M., Griffiths, P.: The regulator map for a general curve. In: Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), pp. 117–127, Contemporary Mathematics, vol. 312. American Mathematical Society, Providence (2002)

[36]

Griffiths P, Harris J. Principles of Algebraic Geometry. 1978 New York: Wiley

[37]

Green M. Griffiths’ infinitesimal invariant and the Abel–Jacobi map. J. Differ. Geom.. 1989, 29 545-555

[38]

Griffiths PA. On the periods of certain rational integrals: I and II. Ann. Math.. 1969, 90 460-541

[39]

Green M, Griffiths P, Kerr M. Néron models and limits of Abel–Jacobi mappings. Compos. Math.. 2010, 146 2 288-366

[40]

Green M, Müller-Stach S. Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Compos. Math. (3). 1996, 100 3 305-309

[41]

Jannsen, U. Deligne cohomology. In: Rapoport, M., Schappacher, N., Schneider, P. (eds.) Hodge-${{\cal D}}$-Functions. Perspective Mathematics, vol. 4, pp. 305–372. Academic Press, New York (1988)

[42]

Jannsen, U.: Motives, Mixed, Algebraic $K$-Theory. Lecture Notes in Math, vol. 1000. Springer-Verlag, Berlin (1990)

[43]

Jannsen, U.: Equivalence relations on algebraic cycles. In: Gordon, B., Lewis, J., Müller-Stach, S., Saito, S., Yui), N. (eds.) The Arithmetic and Geometry of Algebraic Cycles, Proceedings of the CRM Summer School, 7–19 June, 1998, Banff, Alberta, Canada. NATO Science Series, vol. 548, pp. 225–260. Kluwer Academic Publishers, Berlin (2000)

[44]

Kahn, B.: Groupe de Brauer et $(2,1)$-cycles indecomposables. Preprint (2011)

[45]

Kato K. Milnor $K$-theory and the Chow group of zero cycles. Contemp. Math. I. 1986, I 55 241-253

[46]

Kerr M, Lewis JD, Müller-Stach S. The Abel–Jacobi map for higher Chow groups. Compos. Math.. 2006, 142 2 374-396

[47]

Kerr M, Lewis JD. The Abel–Jacobi map for higher Chow groups, II. Invent. Math.. 2007, 170 2 355-420

[48]

Kerz M. The Gersten conjecture for Milnor K-theory. Invent. Math.. 2009, 175 1 1-33

[49]

King J. Log complexes of currents and functorial properties of the Abel–Jacobi map. Duke Math. J.. 1983, 50 1 1-53

[50]

Kang, S-J., Lewis, J. D.: Beilinson’s Hodge conjecture for $K_1$ revisited, Cycles, motives and Shimura varieties, 197-215, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2010

[51]

Levine M. Localization on singular varieties. Invent. Math.. 1988, 31 423-464

[52]

Lewis, J.D.: A Survey of the Hodge Conjecture. Appendix B by B. Brent Gordon. CRM Monograph Series, vol. 10, 2nd edn. American Mathematical Society, Providence (1999)

[53]

Lewis, J.D.: Real regulators on Milnor complexes. $K$-Theory 25(3), 277–298 (2002)

[54]

Lewis, J.D.: Regulators of Chow cycles on Calabi-Yau varieties. In: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001). Fields Institute Communications, vol. 38, pp. 87–117. American Mathematical Society, Providence (2003)

[55]

Lewis JD. Lectures on algebraic cycles. Bol. Soc. Mat. Mexicana (3). 2001, 7 2 137-192

[56]

Lewis JD. A filtration on the Chow groups of a complex projective variety. Compos. Math.. 2001, 128 3 299-322

[57]

Lewis JD. Abel–Jacobi equivalence and a variant of the Beilinson–Hodge conjecture. J. Math. Sci. Univ. Tokyo. 2010, 17 179-199

[58]

Lewis JD. Arithmetic normal functions and filtrations on Chow groups. Proc. Am. Math. Soc.. 2012, 140 8 2663-2670

[59]

Lewis JD. A note on indecomposable motivic cohomology classes. J. Reine Angew. Math.. 1997, 485 161-172

[60]

Lewis, J. D.: Cycles on varieties over subfields of ${\mathbb{C}}$ and cubic equivalence. In: Motives and Algebraic Cycles, pp. 233–247. Fields Institute Communications, vol. 56. American Mathematical Society, Providence (2009)

[61]

Lewis, J. D.: Hodge type conjectures and the Bloch-Kato theorem. In: Hodge Theory, Complex Geometry, and Representation Theory, pp. 235–258. Contemporary Mathathematics, vol. 608. American Mathematical Society, Providence (2014)

[62]

Lewis, J. D.: Transcendental methods in the study of algebraic cycles with a special emphasis on Calabi-Yau varieties. In: Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds. Fields Institute Communications, vol. 67, 29-69, Springer, New York (2013)

[63]

Lewis JD, Saito S. Algebraic cycles and Mumford–Griffiths invariants. Am. J. Math.. 2007, 129 6 1449-1499

[64]

Milne, J.: Étale Cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)

[65]

Müller-Stach S. Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Algebraic Geom.. 1997, 6 513-543

[66]

Müller-Stach, S.: Algebraic cycle complexes. In: Saito, S. (ed.) Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles 548, (Lewis, Yui, Gordon, Müller-Stach, pp. 285–305. Kluwer Academic Publishers, Dordrecht (2000)

[67]

Paranjape K. Cohomological and cycle-theoretic connectivity. Ann. of Math. (2). 1994, 139 3 641-660

[68]

Raynaud M. Courbes sur une variété abélienne et points de torsion. Invent. Math.. 1983, 71 207-233

[69]

Saito, M.: Direct image of logarithmic complexes and infinitesimal invariants of cycles. In: Algebraic Cycles and Motives, vol. 2, pp. 304–318. London Mathematical Society Lecture Note Series, vol. 344. Cambridge University Press, Cambridge (2007)

[70]

Saito M. Hodge-type conjecture for higher Chow groups. Pure Appl. Math. Quart.. 2009, 5 3 947-976

[71]

Saito, S.: Beilinson’s Hodge and Tate conjectures. In: Müller-Stach, S., Peters, C. (eds.) Transcendental Aspects of Algebraic Cycles. LNS, vol. 313, pp. 276–290. London Mathematical Society, London (2004)

[72]

Steenbrink, J.H.M.: A summary of mixed Hodge theory, Motives (Seattle, WA, 1991), pp. 31–41. In: Proceedings of Symposia in Pure Mathematics, vol. 55, Part 1. American Mathematical Society, Providence (1994)

[73]

Voisin C. The Griffiths group of a general Calabi–Yau threefold is not finitely generated. Duke Math. J.. 2000, 102 1 151-186

[74]

Weibel C. The norm residue isomorphism theorem. Topology. 2009, 2 346-372

AI Summary AI Mindmap
PDF

323

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/