$*$-Lie derivable mapping,Derivation,Von Neumann algebra" /> $*$-Lie derivable mapping" /> $*$-Lie derivable mapping,Derivation,Von Neumann algebra" />

$*$-Lie Derivable Mappings on Von Neumann Algebras

Changjing Li , Quanyuan Chen , Ting Wang

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 81 -92.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 81 -92. DOI: 10.1007/s40304-015-0077-7
Article

$*$-Lie Derivable Mappings on Von Neumann Algebras

Author information +
History +
PDF

Abstract

In this paper, we prove that every $*$-Lie derivable mapping on a von Neumann algebra with no central abelian projections can be expressed as the sum of an additive $*$-derivation and a mapping with image in the center vanishing at commutators.

Keywords

$*$-Lie derivable mapping')">$*$-Lie derivable mapping / Derivation / Von Neumann algebra

Cite this article

Download citation ▾
Changjing Li, Quanyuan Chen, Ting Wang. $*$-Lie Derivable Mappings on Von Neumann Algebras. Communications in Mathematics and Statistics, 2016, 4(1): 81-92 DOI:10.1007/s40304-015-0077-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai ZF, Du SP. The structure of nonlinear Lie derivation on von Neumann algebras. Linear Algebra Appl.. 2012, 436 2701-2708

[2]

Brešar M. Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Am. Math. Soc.. 1993, 335 525-546

[3]

Brešar M, Miers CR. Commutativity preserving mappings of von Neumann algebras. Can. J. Math.. 1993, 45 695-708

[4]

Cheung WS. Lie derivations of triangular algebras. Linear Multilinear Algebra. 2003, 51 299-310

[5]

Li CJ, Fang XC. Lie triple and Jordan derivable mappings on nest algebras. Linear Multilinear Algebra. 2013, 61 653-666

[6]

Lu FY. Lie derivations of certain CSL algebras. Israel J. Math.. 2006, 155 149-156

[7]

Lu FY. Lie derivations of $\cal {J}$-subspace lattice algebras. Proc. Am. Math. Soc.. 2007, 135 2581-2590

[8]

Lu FY, Liu BH. Lie derivations of reflexive algebras. Integral Equ. Oper. Theory.. 2009, 64 261-271

[9]

Lu FY, Liu BH. Lie derivable maps on B(X). J. Math. Anal. Appl.. 2010, 372 369-376

[10]

Mathieu M, Villena AR. The structure of Lie derivations on $C^{\ast }$-algebras. J. Funct. Anal.. 2003, 202 504-525

[11]

Martindale WS III. Lie derivations of primitive rings. Michigan J. Math.. 1964, 11 183-187

[12]

Miers CR. Lie derivations of von Neumann algebras. Duke Math. J.. 1973, 40 403-409

[13]

Miers CR. Lie isomorphisms of operator algebras. Pac. J. Math.. 1971, 38 717-735

[14]

Yu WY, Zhang JH. Nonlinear Lie derivations of triangular algebras. Linear Algebra Appl.. 2010, 432 2953-2960

Funding

Natural Science Foundation of Shandong Province, China(ZR2015PA010)

National Natural Science Foundation of China(11401273)

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/