Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences
Emin Öz c̣ ağ , Limonka Lazarova , Biljana Jolevska-Tuneska
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 63 -80.
Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences
In this paper the compositions $(x_+^\mu )_-^{{-}s},\, (x_+^\mu )_+^{{-}s},\, (|x|^\mu )_-^{{-}s}$ and $(|x|^\mu )_+^{{-}s}$ of distributions $x_+^\mu ,\,|x|^\mu $ and $x^{{-}s}$ are considered. They are defined via neutrix calculus for $\mu >0, \, s=1,\,2,\ldots $ and $\mu s\in {\mathbb {Z}}^+.$ In addition, the composition of $x^{{-}s}\ln |x|$ and $x_+^r$ is also defined for $r,\,s\in {\mathbb {Z}}^+.$
Composition of distributions / Dirac delta function / Pseudo-function / Neutrix calculus / Hadamard finite part / Regular sequence / Delta sequence
| [1] |
Antosik, P.: Composition of Distributions. Technical Report no. 9, pp. 1–30. University of Wisconsin, Milwaukee (1988–1989) |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Lazarova, L., Jolevska-Tuneska, B., Aktürk, İ, Özc̣ağ, E.: Note on the Distribution Composition $(x_+^\mu )^\lambda $. Bull. Malays. Math. Sci. Soc. (submitted) |
| [16] |
|
| [17] |
|
| [18] |
Özc̣ağ, E.: Defining distribution composition $(|x|^\mu )^{-s}.$ Asian Eur. J. Math. (2015). doi:10.1142/S1793557116500510 |
| [19] |
|
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |