Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences

Emin Öz c̣ ağ , Limonka Lazarova , Biljana Jolevska-Tuneska

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 63 -80.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 63 -80. DOI: 10.1007/s40304-015-0076-8
Article

Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences

Author information +
History +
PDF

Abstract

In this paper the compositions $(x_+^\mu )_-^{{-}s},\, (x_+^\mu )_+^{{-}s},\, (|x|^\mu )_-^{{-}s}$ and $(|x|^\mu )_+^{{-}s}$ of distributions $x_+^\mu ,\,|x|^\mu $ and $x^{{-}s}$ are considered. They are defined via neutrix calculus for $\mu >0, \, s=1,\,2,\ldots $ and $\mu s\in {\mathbb {Z}}^+.$ In addition, the composition of $x^{{-}s}\ln |x|$ and $x_+^r$ is also defined for $r,\,s\in {\mathbb {Z}}^+.$

Keywords

Composition of distributions / Dirac delta function / Pseudo-function / Neutrix calculus / Hadamard finite part / Regular sequence / Delta sequence

Cite this article

Download citation ▾
Emin Öz c̣ ağ,Limonka Lazarova,Biljana Jolevska-Tuneska. Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences. Communications in Mathematics and Statistics, 2016, 4(1): 63-80 DOI:10.1007/s40304-015-0076-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/