Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences

Emin Öz c̣ ağ , Limonka Lazarova , Biljana Jolevska-Tuneska

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 63 -80.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 63 -80. DOI: 10.1007/s40304-015-0076-8
Article

Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences

Author information +
History +
PDF

Abstract

In this paper the compositions $(x_+^\mu )_-^{{-}s},\, (x_+^\mu )_+^{{-}s},\, (|x|^\mu )_-^{{-}s}$ and $(|x|^\mu )_+^{{-}s}$ of distributions $x_+^\mu ,\,|x|^\mu $ and $x^{{-}s}$ are considered. They are defined via neutrix calculus for $\mu >0, \, s=1,\,2,\ldots $ and $\mu s\in {\mathbb {Z}}^+.$ In addition, the composition of $x^{{-}s}\ln |x|$ and $x_+^r$ is also defined for $r,\,s\in {\mathbb {Z}}^+.$

Keywords

Composition of distributions / Dirac delta function / Pseudo-function / Neutrix calculus / Hadamard finite part / Regular sequence / Delta sequence

Cite this article

Download citation ▾
Emin Öz c̣ ağ, Limonka Lazarova, Biljana Jolevska-Tuneska. Defining Compositions of $x_+^\mu ,\,|x|^\mu ,\,x^{-s}$, and $x^{-s}\ln |x|$ as Neutrix Limit of Regular Sequences. Communications in Mathematics and Statistics, 2016, 4(1): 63-80 DOI:10.1007/s40304-015-0076-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antosik, P.: Composition of Distributions. Technical Report no. 9, pp. 1–30. University of Wisconsin, Milwaukee (1988–1989)

[2]

Antosik P, Mikusinski J, Sikorski R. Theory of Distributions, the Sequential Approach. 1973 Amsterdam: PWN-Elsevier

[3]

Fisher B. On the neutrix product of distributions. Math. Nachr.. 1982, 108 117-127

[4]

Fisher B. On defining the change of variable in distributions. Rostock. Math. Kolloqu.. 1985, 28 75-86

[5]

Fisher B. On defining the distribution $(x_+^r)_-^{-s}$. Zb. Rad.. 1985, 15 1 119-129

[6]

Fisher B, Jolevska-Tuneska B. Two results on the composition of distributions. Thai J. Math.. 2005, 3 17-26

[7]

Fisher B, Taş K. On the composition of distributions $x_+^{-r}$ and $x_+^\mu $. Indian J. Pure Appl. Math.. 2005, 36 1 11-22

[8]

Fisher B, Taş K. On the composition of distributions $x^{-1}\ln |x|$ and $x_+^r$. Integral Transforms Spec. Funct.. 2005, 16 7 533-543

[9]

Fisher B, Ege I, Özc̣ağ E. On the neutrix composition of distributions $x^{-s}\ln ^m|x|$ and $x^r$. Appl. Anal.. 2010, 89 3 365-375

[10]

Gel’fand IM, Shilov GE. Generalized Functions. 1964 New York: Academic

[11]

Hoskins RF, Pinto JS. Distributions, Ultradistributions and Other Generalized Functions. 1994 New York: Ellis Horwood

[12]

Jones DS. Hadamard’s finite part. Math. Methods Appl. Sci.. 1996, 19 13 1017-1052

[13]

Kleinert H, Chervyakov A. Rules for integrals over products of distributions from coordinate independence of path integrals. Eur. Phys. J. C. 2001, 19 4 743-747

[14]

Kou H, Fisher B. On composition of distributions. Publ. Math. Debr.. 1992, 40 3–4 279-290

[15]

Lazarova, L., Jolevska-Tuneska, B., Aktürk, İ, Özc̣ağ, E.: Note on the Distribution Composition $(x_+^\mu )^\lambda $. Bull. Malays. Math. Sci. Soc. (submitted)

[16]

Li CK, Li C. On defining the distributions $\delta ^k$ and $(\delta ^{\prime })^k$ by fractional derivatives. Appl. Math. Comput.. 2014, 246 502-513

[17]

Nicholas JD, Fisher B. The distribution composition $(x_+^r)^{-s}$. J. Math. Anal. Appl.. 2001, 258 131-145

[18]

Özc̣ağ, E.: Defining distribution composition $(|x|^\mu )^{-s}.$ Asian Eur. J. Math. (2015). doi:10.1142/S1793557116500510

[19]

Özc̣ağ E, Ege I, Gürc̣ay H. On powers of the Heaviside function for negative integers. J. Math. Anal. Appl.. 2007, 326 101-107

[20]

Temple G. The theory of generalized functions. Proc. R. Soc. A. 1955, 28 175-190

[21]

van der Corput JG. Introduction to the neutrix calculus. J. Anal. Math.. 1959, 7 291-398

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/