Generalized Derivations Acting on Multilinear Polynomials in Prime Rings and Banach Algebras

Basudeb Dhara , Nurcan Argaç

Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 39 -54.

PDF
Communications in Mathematics and Statistics ›› 2016, Vol. 4 ›› Issue (1) : 39 -54. DOI: 10.1007/s40304-015-0073-y
Article

Generalized Derivations Acting on Multilinear Polynomials in Prime Rings and Banach Algebras

Author information +
History +
PDF

Abstract

Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, F and G, the two nonzero generalized derivations of R, I an ideal of R and $f(x_1,\ldots ,x_n)$ a multilinear polynomial over C which is not central valued on R. If

$\begin{aligned} F(G(f(x_1,\ldots ,x_n))f(x_1,\ldots ,x_n))=0 \end{aligned}$
for all $x_1,\ldots ,x_n \in I$, then one of the followings holds: (1) there exist $a,b\in U$ such that $F(x)=ax$ and $G(x)=bx$ for all $x\in R$ with $ab=0$; (2) there exist $a,b,p\in U$ such that $F(x)=ax+xb$ and $G(x)=px$ for all $x\in R$ with $F(p)=0$ and $f(x_1,\ldots ,x_n)^2$ is central valued on R. We also obtain some related results in cases where R is a semiprime ring and Banach algebra.

Keywords

Prime ring / Derivation / Generalized derivation / Extended centroid / Utumi quotient ring / Banach algebra

Cite this article

Download citation ▾
Basudeb Dhara, Nurcan Argaç. Generalized Derivations Acting on Multilinear Polynomials in Prime Rings and Banach Algebras. Communications in Mathematics and Statistics, 2016, 4(1): 39-54 DOI:10.1007/s40304-015-0073-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Argaç N, De Filippis V. Actions of generalized derivations on multilinear polynomials in prime rings. Algebra Colloq.. 2011, 18 Spec 01 955-964

[2]

Argaç N, Demir Ç. Generalized derivations of prime rings on multilinear polynomials with annhilator conditions. Turk. J. Math.. 2013, 37 2 231-243

[3]

Demir Ç, Argaç N. Prime rings with generalized derivations on right ideals. Algebra Colloq.. 2011, 18 1 987-908

[4]

Beidar, K.I.: Rings of quotients of semiprime rings. Vestn. Mosk. Univ. Ser. I Mat. Mek. (Engl. Transl: Moskow Univ. Math. Bull.) 33, 36–42 (1978)

[5]

Bergen J, Herstein IN, Kerr JW. Lie ideals and derivations of prime rings. J. Algebra. 1981, 71 259-267

[6]

Beidar, K.I., Martindale III, W.S., Mikhalev, A.V.: Rings with Generalized Identities. Pure and Applied Mathematics, vol. 196. Marcel Dekker, New York (1996)

[7]

Carini L, De Filippis V. Centralizers of generalized derivations on multilinear polynomials in prime rings. Sib. Math. J.. 2012, 53 6 1051-1060

[8]

Chen HY. Generalized derivations with Engel conditions on polynomials. Comm. Algebra. 2011, 39 3709-3721

[9]

Chuang CL. GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc.. 1988, 103 3 723-728

[10]

Chuang CL. The additive subgroup generated by a polynomial. Isr. J. Math.. 1987, 59 1 98-106

[11]

Chuang CL. Hypercentral derivations. J. Algebra. 1994, 166 1 34-71

[12]

De Filippis V, Di Vincenzo OM. Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Comm. Algebra. 2012, 40 1918-1932

[13]

Dhara, B., Argaç, N., Pradhan, K.G.: Annihilator condition of a pair of derivations in prime and semiprime rings. Indian J. Pure Appl. Math. (to appear)

[14]

Erickson TS, Martindale WS III, Osborn JM. Prime nonassociative algebras. Pacific J. Math.. 1975, 60 49-63

[15]

Faith C, Utumi Y. On a new proof of Litoff’s theorem. Acta Math. Acad. Sci. Hung.. 1963, 14 369-371

[16]

Jacobson N. Structure of Rings. 1964 Providence: American Mathematical Society Colloquium Publications, American Mathematical Society

[17]

Johnson BE, Sinclair AM. Continuity of derivations and a problem of Kaplansky. Amer. J. Math.. 1968, 90 1067-1073

[18]

Kharchenko VK. Differential identity of prime rings. Algebra Log.. 1978, 17 155-168

[19]

Lee TK. Generalized derivations of left faithful rings. Comm. Algebra. 1999, 27 8 4057-4073

[20]

Lee TK. Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sin.. 1992, 20 1 27-38

[21]

Leron U. Nil and power central polynomials in rings. Trans. Amer. Math. Soc.. 1975, 202 97-103

[22]

Martindale WS III. Prime rings satisfying a generalized polynomial identity. J. Algebra. 1969, 12 576-584

[23]

Posner EC. Derivations in prime rings. Proc. Amer. Math. Soc.. 1957, 8 1093-1100

[24]

Rania F. Generalized derivations and annihilator conditions in prime rings. Int. J. Algebra. 2008, 2 20 963-969

[25]

Sinclair AM. Jordan homomorphisms and derivations on semisimple Banach algebras. Proc. Amer. Math. Soc.. 1970, 24 209-214

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/