On Automorphisms of Distance-Regular Graph with Intersection Array $\{18,15,9;\,1,1,10\}$

A. A. Makhnev , D. V. Paduchikh

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (4) : 527 -534.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (4) : 527 -534. DOI: 10.1007/s40304-015-0072-z
Article

On Automorphisms of Distance-Regular Graph with Intersection Array $\{18,15,9;\,1,1,10\}$

Author information +
History +
PDF

Abstract

Recently, Makhnev and Nirova found intersection arrays of distance-regular graphs with $\lambda =2$ and at most 4096 vertices. In the case of primitive graphs of diameter 3 with $\mu = 1$ there corresponding arrays are $\{18,15,9;1,1,10\}$, $\{33,30,8;1,1,30\}$ or $\{39,36,4;1,1,36\}$. In this work, possible orders and subgraphs of fixed points of the hypothetical distance-regular graph with intersection array $\{18,15,9;1,1,10\}$ are studied. In particular, graph with intersection array $\{18,15,9;1,1,10\}$ is not vertex symmetric.

Keywords

Distance-regular graph / Automorphism / Vertex symmetric graph

Cite this article

Download citation ▾
A. A. Makhnev, D. V. Paduchikh. On Automorphisms of Distance-Regular Graph with Intersection Array $\{18,15,9;\,1,1,10\}$. Communications in Mathematics and Statistics, 2015, 3(4): 527-534 DOI:10.1007/s40304-015-0072-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Makhnev AA, Nirova MC. On distance-regular graphs with $\lambda =2$. J. Sib. Fed. Univ.. 2014, 7 2 188-194

[2]

Makhnev AA, Paduchikh DV. On automorphisms of distance-regular graph with itersection array $\{24,21,3;1,3,18\}$. Algebra i Log.. 2012, 435 3 476-495

[3]

Cameron PJ. Permutation Groups. 1999 Cambridge: Cambridge University Press

[4]

Gavrilyuk AL, Makhnev AA. On automorphisms of distance-regular graph with itersection array $\{56,45,1;1,9,56\}$. Dokl. Acad. Nauk. 2010, 432 5 512-515

[5]

Brouwer AE, Cohen AM, Neumaier A. Distance-Regular Graphs. 1989 Berlin Heidelberg New York: Springer

[6]

Zavarnitsine AV. Finite simple groups with narrow prime spectrum. Sib. Electr. Math. Rep.. 2009, 6 1-12

Funding

RSF(14-11-00061)

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/