A Donsker Delta Functional Approach to Optimal Insider Control and Applications to Finance

Olfa Draouil , Bernt Øksendal

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 365 -421.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 365 -421. DOI: 10.1007/s40304-015-0065-y
Article

A Donsker Delta Functional Approach to Optimal Insider Control and Applications to Finance

Author information +
History +
PDF

Abstract

We study optimal insider control problems, i.e., optimal control problems of stochastic systems where the controller at any time t, in addition to knowledge about the history of the system up to this time, also has additional information related to a future value of the system. Since this puts the associated controlled systems outside the context of semimartingales, we apply anticipative white noise analysis, including forward integration and Hida–Malliavin calculus to study the problem. Combining this with Donsker delta functionals, we transform the insider control problem into a classical (but parametrised) adapted control system, albeit with a non-classical performance functional. We establish a sufficient and a necessary maximum principle for such systems. Then we apply the results to obtain explicit solutions for some optimal insider portfolio problems in financial markets described by Itô–Lévy processes. Finally, in the Appendix, we give a brief survey of the concepts and results we need from the theory of white noise, forward integrals and Hida–Malliavin calculus.

Keywords

Optimal inside information control / Hida–Malliavin calculus / Donsker delta functional / Anticipative stochastic calculus / BSDE / Optimal insider portfolio

Cite this article

Download citation ▾
Olfa Draouil, Bernt Øksendal. A Donsker Delta Functional Approach to Optimal Insider Control and Applications to Finance. Communications in Mathematics and Statistics, 2015, 3(3): 365-421 DOI:10.1007/s40304-015-0065-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biagini F, Øksendal B. A general stochastic calculus approach to insider trading. Appl. Math. Optim.. 2005, 52 167-181

[2]

Di Nunno G, Meyer-Brandis T, Øksendal B, Proske F. Optimal portfolio for an insider in a market driven by Lévy processes. Quant. Financ.. 2006, 6 83-94

[3]

Øksendal B, Røse E. A White Noise Approach to Insider Trading. 2014 Oslo: University of Oslo

[4]

Pikovsky I, Karatzas I. Anticipative portfolio optimization. Adv. Appl. Probab.. 1996, 28 1095-1122

[5]

Russo F, Vallois P. Forward, backward and symmetric stochastic integration. Probab. Theory Relat. Fields. 1993, 93 403-421

[6]

Di Nunno G, Meyer-Brandis T, Øksendal B, Proske F. Malliavin calculus and anticipative Itô formulae for Lévy processes. Inf. Dimens. Anal. Quantum Probab. Relat. Top.. 2005, 8 235-258

[7]

Protter P. Stochastic Integration and Differential Equations. 2005 2 Berlin: Springer

[8]

Breiman L. Probability. 1968 Reading: Addison-Wesley

[9]

Lanconelli A, Proske F. On explicit strong solution of Itô-SDEs and the Donsker delta function of a diffusion. Inf. Dimens. Anal. Quatum Probab. Relat. Top.. 2004, 7 437-447

[10]

Meyer-Brandis T, Proske F. On the existence and explicit representability of strong solutions of Lévy noise driven SDEs with irregular coefficients. Commun. Math. Sci.. 2006, 4 129-154

[11]

Di Nunno G, Øksendal B. Cruzeiro AB, Ouerdiane H, Obata N. A representation theorem and a sensitivity result for functionals of jump diffusions. Mathematical Analysis and Random Phenomena. 2007 Singapore: World Scientific. 177-190

[12]

Mataramvura S, Øksendal B, Proske F. The Donsker delta function of a Lévy process with application to chaos expansion of local time. Annales de l’IHP Probabilités et Statistiques. 2004, 40 553-567

[13]

Di Nunno G, Øksendal B, Proske F. Malliavin Calculus for Lévy Processes with Applications to Finance. 2009 Berlin: Springer

[14]

Di Nunno G, Øksendal B. The Donsker delta function, a representation formula for functionals of a Lévy process and application to hedging in incomplete markets. Séminaires et Congrèes, Societé Mathématique de France. 2007, 16 71-82

[15]

Aase K, Øksendal B, Ubøe J. Using the Donsker delta function to compute hedging strategies. Potential Anal.. 2001, 14 351-374

[16]

Øksendal, B., Sulem, A.: Risk minimization in financial markets modeled by Itô–Lévy processes. Afrika Matematika (2014). doi:10.1007/s13370-014-02489-9

[17]

Øksendal B, Sulem A. Applied Stochastic Control of Jump Diffusions. 2007 2 Berlin: Springer

[18]

Barndorff-Nielsen, O.E., Benth, F.E., Szozda, B.: On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis. arXiv:1303.4625v1 (2013)

[19]

Holden H, Øksendal B, Ubøe J, Zhang T. Stochastic Partial Differential Equations. 2010 2 Berlin: Springer

[20]

Øksendal B, Røse E. Applications of White Noise to Mathematical Finance. 2015 Oslo: University of Oslo

[21]

Aase K, Øksendal B, Privault N, Ubøe J. White noise generalizations of the Clark–Haussmann–Ocone theorem with application to mathematical finance. Financ. Stoch.. 2000, 4 465-496

[22]

Agram, N., Øksendal, B.: Malliavin calculus and optimal control of stochastic Volterra equations. J. Optim. Theory Appl. (2015). doi:10.1007/s10957-015-0753-5

[23]

Dahl, K.R., Mohammed, S.-E.A., Øksendal, B., Røse, E.R.: Optimal control with noisy memory and BSDEs with Malliavin derivatives. arXiv:1403.4034 (2014)

[24]

Russo F, Vallois P. The generalized covariation process and Itô formula. Stoch. Process. Appl.. 1995, 59 4 81-104

[25]

Russo F, Vallois P. Stochastic calculus with respect to continuous finite quadratic variation processes. Stochastics. 2000, 70 4 1-40

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/