On the Linear Independence and Partition of Unity of Arbitrary Degree Analysis-Suitable T-splines

Jingjing Zhang , Xin Li

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 353 -364.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 353 -364. DOI: 10.1007/s40304-015-0064-z
Article

On the Linear Independence and Partition of Unity of Arbitrary Degree Analysis-Suitable T-splines

Author information +
History +
PDF

Abstract

Analysis-suitable T-splines are a topological-restricted subset of T-splines, which are optimized to meet the needs both for design and analysis (Li and Scott Models Methods Appl Sci 24:1141–1164, 2014; Li et al. Comput Aided Geom Design 29:63–76, 2012; Scott et al. Comput Methods Appl Mech Eng 213–216, 2012). The paper independently derives a class of bi-degree $(d_{1}, d_{2})$ T-splines for which no perpendicular T-junction extensions intersect, and provides a new proof for the linearly independence of the blending functions. We also prove that the sum of the basis functions is one for an analysis-suitable T-spline if the T-mesh is admissible based on a recursive relation.

Keywords

T-splines / Analysis-suitable T-splines / Linear independence / Partition of unity / Isogeometric analysis

Cite this article

Download citation ▾
Jingjing Zhang, Xin Li. On the Linear Independence and Partition of Unity of Arbitrary Degree Analysis-Suitable T-splines. Communications in Mathematics and Statistics, 2015, 3(3): 353-364 DOI:10.1007/s40304-015-0064-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW. Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng.. 2010, 199 5–8 229-263

[2]

Buffa A, Cho D, Sangalli G. Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Methods Appl. Mech. Eng.. 2010, 199 23–24 1437-1445

[3]

Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. 2009 Chichester: Wiley

[4]

Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design. 2013, 30 331-356

[5]

Finnigan, G.T.: Arbitrary degree T-splines. Master’s thesis, Brigham Young University (2008)

[6]

Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng.. 2005, 194 4135-4195

[7]

Ipson, H.: T-spline merging. Master’s thesis, Brigham Young University (2005)

[8]

Li X, Scott MA. Analysis-suitable T-splines: characterization, refinablility and approximation. Math. Models Methods Appl. Sci.. 2014, 24 1141-1164

[9]

Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA. On the linear independence of T-splines blending functions. Comput. Aided Geom. Design. 2012, 29 63-76

[10]

Nguyen-Thanh N, Nguyen-Xuan H, Bordas SPA, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng.. 2011, 200 1892-1908

[11]

Scott MA, Li X, Sederberg TW, Hughes TJR. Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng.. 2012, 213–216 206-222

[12]

Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline simplification and local refinement. ACM Trans. Gr.. 2004, 23 3 276-283

[13]

Sederberg, T.W., Finnigan, G.T., Li, X., Lin, H., Ipson, H.: Watertight trimmed NURBS. ACM Trans. Gr. 27(3), Article no. 79 (2008)

[14]

Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCSs. ACM Trans. Gr.. 2003, 22 3 477-484

[15]

Veiga LB, Buffa A, Sangalli DCG. Analysis-suitable T-splines are dual-compatible. Comput. Methods Appl. Mech. Eng.. 2012, 249–252 42-51

[16]

Veiga LB, Buffa A, Sangalli G, Vazquez R. Analysis-suitable T-splines of arbitrary degree: definition and properties. Math. Models Methods Appl. Sci.. 2013, 23 1979-2003

[17]

Vuong AV, Giannelli C, Jüttler B, Simeon B. A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2011, 200 3554-3567

[18]

Wang A, Zhao G. The analysis of t-spline blending functions linear independence. Comput. Aided Design Appl.. 2011, 8 5 735-745

[19]

Wang A, Zhao G. An algorithm of determining t-spline classification. Expert Syst. Appl.. 2013, 40 18 7280-7284

[20]

Wang A, Zhao G, Li YD. An influence-knot set based new local refinement algorithm for T-spline surfaces. Expert Syst. Appl.. 2014, 41 8 3915-3921

[21]

Wang A, Zhao G, Li YD. Linear independence of the blending functions of T-splines without multiple knots. Expert Syst. Appl.. 2014, 41 8 3634-3639

[22]

Wang P, Xu J, Deng J, Chen F. Adaptiveisogeometricanalysis using rational pht-splines. Comput. Aided Design. 2011, 43 1438-1448

Funding

NSF of China(ID0EPDAE5)

SRF for ROCS SE(ID0EAGAE6)

NBRPC(ID0EPIAE7)

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/