HOMFLY Polynomial from a Generalized Yang–Yang Function

Sen Hu , Peng Liu

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 329 -352.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 329 -352. DOI: 10.1007/s40304-015-0063-0
Article

HOMFLY Polynomial from a Generalized Yang–Yang Function

Author information +
History +
PDF

Abstract

Starting from the free field realization of Kac–Moody Lie algebra, we define a generalized Yang–Yang function. Then for the Lie algebra of type $A_{n}$, we derive braiding and fusion matrix by braiding the thimble from the generalized Yang–Yang function. One can construct a knots invariant H(K) from the braiding and fusion matrix. It is an isotropy invariant and obeys a skein relation. From them, we show that the corresponding knots invariant is HOMFLY polynomial.

Keywords

Yang–Yang function / Thimbles / HOMFLY polynomials

Cite this article

Download citation ▾
Sen Hu, Peng Liu. HOMFLY Polynomial from a Generalized Yang–Yang Function. Communications in Mathematics and Statistics, 2015, 3(3): 329-352 DOI:10.1007/s40304-015-0063-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/