HOMFLY Polynomial from a Generalized Yang–Yang Function

Sen Hu , Peng Liu

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 329 -352.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (3) : 329 -352. DOI: 10.1007/s40304-015-0063-0
Article

HOMFLY Polynomial from a Generalized Yang–Yang Function

Author information +
History +
PDF

Abstract

Starting from the free field realization of Kac–Moody Lie algebra, we define a generalized Yang–Yang function. Then for the Lie algebra of type $A_{n}$, we derive braiding and fusion matrix by braiding the thimble from the generalized Yang–Yang function. One can construct a knots invariant H(K) from the braiding and fusion matrix. It is an isotropy invariant and obeys a skein relation. From them, we show that the corresponding knots invariant is HOMFLY polynomial.

Keywords

Yang–Yang function / Thimbles / HOMFLY polynomials

Cite this article

Download citation ▾
Sen Hu, Peng Liu. HOMFLY Polynomial from a Generalized Yang–Yang Function. Communications in Mathematics and Statistics, 2015, 3(3): 329-352 DOI:10.1007/s40304-015-0063-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jones VFR. A polynomial invariant for knots via von neumann algebra. Bull. Am. Math. Soc.. 1985, 12 103-111

[2]

Freyd Peter . A new polynomial invariant of knots and links. Bull. Am. Math. Soc.. 1985, 12 2 239-246

[3]

Kauffman Louis H. Knots and Physics. 1991 Singapore: World Scientific

[4]

Witten Edward. Quantum field theory and the Jones polynomial. Commun. Math. Phys.. 1989, 121 3 351-399

[5]

Gaiotto, D., Witten, E.: Knot invariants from four-dimensional gauge theory. arXiv preprint arXiv:1106.4789 (2011)

[6]

Fan, H.: Schrodinger equations, deformation theory and $tt$* geometry. arXiv: 1107.1290

[7]

Losev, A.: Hodge strings and elements of K. Saitos theory of the primitive form. arXiv:hep-th/9801179

[8]

Hu, S., Liu, P.: Knot invariants from the Yang–Yang function. To appear in the 6th ICCM Proceedings

[9]

Hu, S., Liu, P.: Kauffman polynomial from a generalized Yang–Yang function. arXiv preprint arXiv:1406.1851 (2014)

[10]

Feigin B, Frenkel E, Reshetikhin N. Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys.. 1994, 166 1 27-62

[11]

Awata H, Tsuchiya A, Yamada Y. Integral formulas for the WZNW correlation functions. Nucl. Phys. B. 1991, 365 3 680-696

[12]

Frenkel E. Free field realizations in representation theory and conformal field theory. Proceedings of the International Congress of Mathematicians. 1995 Basel: Birkhäuser

[13]

Witten Edward. Analytic continuation of Chern–Simons theory. Chern–Simons Gauge Theory. 2010, 20 347-446

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/