Convergence of the Generalized Kähler-Ricci Flow

Jiawei Liu , Yue Wang

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (2) : 239 -261.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (2) :239 -261. DOI: 10.1007/s40304-015-0058-x
Article

Convergence of the Generalized Kähler-Ricci Flow

Author information +
History +
PDF

Abstract

In this paper, we consider the convergence of the generalized Kähler-Ricci flow with semi-positive twisted form $\theta $ on Kähler manifold $M$. We give detailed proofs of the uniform Sobolev inequality and some uniform estimates for the metric potential and the generalized Ricci potential along the flow. Then assuming that there exists a generalized Kähler-Einstein metric, if the twisting form $\theta $ is strictly positive at a point or $M$ admits no nontrivial Hamiltonian holomorphic vector field, we prove that the generalized Kähler-Ricci flow must converge in $C^\infty $ topology to a generalized Kähler-Einstein metric exponentially fast, where we get the exponential decay without using the Futaki invariant.

Keywords

Complex Monge-Ampère equation / Generalized Kähler-Einstein metric / Sobolev inequality / Moser-Trudinger type inequality

Cite this article

Download citation ▾
Jiawei Liu, Yue Wang. Convergence of the Generalized Kähler-Ricci Flow. Communications in Mathematics and Statistics, 2015, 3(2): 239-261 DOI:10.1007/s40304-015-0058-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin T. Équation du type Monge-Ampère sur les variétés Kählerienes compactes. C. R. Acad. Sci. Paris Sér. A-B. 1976, 283 A119-A121

[2]

Bando, S., Mabuchi, T.: Uniqueness of Einstein-Kähler metrics modulo connected group actions, algebraic geometry. Adv. Studies Pure math. 10 (1987)

[3]

Cao HD. Deformation of K$\ddot{a}$hler metrics to K$\ddot{a}$hler-Einstein metrics on compact K$\ddot{a}$hler manifolds. Invent. Math.. 1985, 81 2 359-372

[4]

Cao HD, Chen BL, Zhu XP. Ricci flow on compact Kähler manifolds of positive bisectional curvature. Comptes Rendus Mathematique. 2003, 337 781-784

[5]

Chen XX, Tian G. Ricci flow on Kähler-Einstein surfaces. Invent. Math.. 2002, 147 3 487-544

[6]

Chen XX, Tian G. Geometric of Kähler metrics and foliations of holomorphic disks. Publications mathématiques. 2008, 107 1 1-107

[7]

Chen XX, Tian G. Ricci flow on Kähler-Einstein manifolds. Duke Math. J.. 2006, 131 1 17-73

[8]

Collins, T., Sz$\acute{e}$kelyhidi, G.: The twisted Kähler-Ricci flow, arXiv:1207.5441v1

[9]

Davies EB. Heat Kernel and Spectral Theory. 1989 Sao Paulo: Cambridge University Press

[10]

Ding WY, Tian G. Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math.. 1992, 110 2 315-335

[11]

Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, 13–33, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence (1999)

[12]

Donaldson, S.K.: Stability, birational transformations and the Kähler-Einstein problem. arXiv:1007.4220. To appear in surveys in differntial geometry, Vol XVII, International Press (2012)

[13]

Li HZ. On the lower bound of the K-energy and the F functional. Osaka J. Math. 2008, 45 1 253-264

[14]

Liu JW. The generalized Kähler Ricci flow. J. Math. Anal. Appl. 2013, 408 751C761

[15]

Perelman, G.: The entropy formula for the Ricci flow and its geometricapplications, arXiv:math.DG/0211159

[16]

Phong D, Sesum N, Sturm J. Multiplier ideal sheaves and the Kähler-Ricci flow. Comm. Anal. Geom.. 2007, 15 3 613-632

[17]

Phong D, Song J, Sturm J, Weinkove B. The K$\ddot{a}$hler-Ricci flow and the $\bar{\partial }$ operator on vector fields. J. DIffer. Geom.. 2009, 81 3 631-647

[18]

Phong D, Sturm J. On stability and the convergence of the K$\ddot{a}$hler-Ricci flow. J. Differ. Geom.. 2006, 72 1 149-168

[19]

Phong D, Sturm J. Lectures on stability and constant scalar curvature. Curr. Dev. Math.. 2007, 2009 101-176

[20]

Rubinstein Y. On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Kähler-Ricci flow. Trans. Amer. Math. Soc.. 2009, 361 5839-5850

[21]

Stoppa J. Twisted constant scalar curvature K ahler metrics and K ahler slope stability. J. Diff. Geom.. 2009, 83 663-691

[22]

Song J, Tian G. Canonical measures and K$\ddot{a}$hler-Ricci flow. J. Amer. Math. Soc.. 2012, 25 303-353

[23]

Tian G. Kähler-Einstein metrics with positive scalar curvature. Invent. Math.. 1997, 137 1-37

[24]

Tian G, Zhu XH. Convergence of K$\ddot{a}$hler-Ricci flow. J. Amer. Math. Soc.. 2007, 20 3 675-699

[25]

Tian, G., Zhu, X.H.: Convergence of the K ahler-Ricci flow on Fano manifolds, II, preprint, arXiv:1102.4798

[26]

Yau ST. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation I. Comm. Pure Appl. Math.. 1978, 31 339-411

[27]

Ye, R.G.: The logarithmic Sobolev inequality along the Ricci flow, preprint, arXiv:0707.2424

[28]

Zhang QS. A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not.. 2007, 2007 rnm056

[29]

Zhang, X., Zhang, X.W.: Generalized K$\ddot{a}$hler-Einstein metrics and Energy functionals, preprint (2010), to appear in Canadian Journal of Mathematical. Can. J. Math. doi:10.4153/CJM-2013-034-3

PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

/