Convergence of the Generalized Kähler-Ricci Flow

Jiawei Liu , Yue Wang

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (2) : 239 -261.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (2) : 239 -261. DOI: 10.1007/s40304-015-0058-x
Article

Convergence of the Generalized Kähler-Ricci Flow

Author information +
History +
PDF

Abstract

In this paper, we consider the convergence of the generalized Kähler-Ricci flow with semi-positive twisted form $\theta $ on Kähler manifold $M$. We give detailed proofs of the uniform Sobolev inequality and some uniform estimates for the metric potential and the generalized Ricci potential along the flow. Then assuming that there exists a generalized Kähler-Einstein metric, if the twisting form $\theta $ is strictly positive at a point or $M$ admits no nontrivial Hamiltonian holomorphic vector field, we prove that the generalized Kähler-Ricci flow must converge in $C^\infty $ topology to a generalized Kähler-Einstein metric exponentially fast, where we get the exponential decay without using the Futaki invariant.

Keywords

Complex Monge-Ampère equation / Generalized Kähler-Einstein metric / Sobolev inequality / Moser-Trudinger type inequality

Cite this article

Download citation ▾
Jiawei Liu,Yue Wang. Convergence of the Generalized Kähler-Ricci Flow. Communications in Mathematics and Statistics, 2015, 3(2): 239-261 DOI:10.1007/s40304-015-0058-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/