$p$-groups,Minimal non-abelian $p$-groups,${\mathcal {A}}_t$-groups" /> $p$-groups" /> $p$-groups" /> ${\mathcal {A}}_t$-groups" /> $p$-groups,Minimal non-abelian $p$-groups,${\mathcal {A}}_t$-groups" />

Finite $p$-Groups all of Whose Subgroups of Index $p^3$ are Abelian

Qinhai Zhang , Libo Zhao , Miaomiao Li , Yiqun Shen

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (1) : 69 -162.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (1) : 69 -162. DOI: 10.1007/s40304-015-0053-2
Article

Finite $p$-Groups all of Whose Subgroups of Index $p^3$ are Abelian

Author information +
History +
PDF

Abstract

Suppose that $G$ is a finite $p$-group. If all subgroups of index $p^t$ of $G$ are abelian and at least one subgroup of index $p^{t-1}$ of $G$ is not abelian, then $G$ is called an ${\mathcal {A}}_t$-group. We use ${\mathcal {A}}_0$-group to denote an abelian group. From the definition, we know every finite non-abelian $p$-group can be regarded as an ${\mathcal {A}}_t$-group for some positive integer $t$. ${\mathcal {A}}_1$-groups and ${\mathcal {A}}_2$-groups have been classified. Classifying ${\mathcal {A}}_3$-groups is an old problem. In this paper, some general properties about ${\mathcal {A}}_t$-groups are given. ${\mathcal {A}}_3$-groups are completely classified up to isomorphism. Moreover, we determine the Frattini subgroup, the derived subgroup and the center of every ${\mathcal {A}}_3$-group, and give the number of ${\mathcal {A}}_1$-subgroups and the triple $(\mu _0,\mu _1,\mu _2)$ of every ${\mathcal {A}}_3$-group, where $\mu _i$ denotes the number of ${\mathcal {A}}_i$-subgroups of index $p$ of ${\mathcal {A}}_3$-groups.

Keywords

$p$-groups')">Finite $p$-groups / $p$-groups')">Minimal non-abelian $p$-groups / ${\mathcal {A}}_t$-groups')">${\mathcal {A}}_t$-groups

Cite this article

Download citation ▾
Qinhai Zhang, Libo Zhao, Miaomiao Li, Yiqun Shen. Finite $p$-Groups all of Whose Subgroups of Index $p^3$ are Abelian. Communications in Mathematics and Statistics, 2015, 3(1): 69-162 DOI:10.1007/s40304-015-0053-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An LJ, Ding JF, Zhang QH. Finite self dual group. J. Algebra. 2011, 341 35-44

[2]

An LJ, Li LL, Qu HP, Zhang QH. Finite $p$-groups with a minimal non-abelian subgroup of index $p$ (II). Sci. China Ser. A. 2014, 57 4 737-753

[3]

An LJ, Hu RF, Zhang QH. Finite $p$-groups with a minimal non-abelian subgroup of index $p$ (IV). J. Algebra Appl.. 2015, 14 2 1550020

[4]

An LJ, Peng J. Finite $p$-groups in which any two noncommutative elements generate an inner abelian group of order $p^4$. Algebra Colloq.. 2013, 20 2 215-226

[5]

Berkovich Y, Janko Z. Structure of finite $p$-groups with given subgroups. Contemp. Math., Amer. Math. Soc., Providence, RI. 2006, 402 13-93

[6]

Berkovich Y. Groups of Prime Power Order. 2008 Berlin: Walter de Gruyter

[7]

Berkovich Y, Janko Z. Groups of Prime Power Order. 2008 Berlin: Walter de Gruyter

[8]

Berkovich Y, Janko Z. Groups of Prime Power Order. 2011 Berlin: Walter de Gruyter

[9]

Berkovich, Y., Janko, Z.: Groups of Prime Power Order, Vol. 4 (in preparation)

[10]

Besche HU, Eick B, O’Brien EA. A millennium project: constructing small groups. Int. J. Algebra Comput.. 2002, 12 5 623-644

[11]

Blackburn N. On prime power groups with two generators. Proc. Camb. Philos. Soc.. 1957, 54 327-337

[12]

Blackburn N. On prime-power groups in which the derived group has two generators. Proc. Camb. Philos. Soc.. 1957, 53 19-27

[13]

Draganyuk, S.V.: On the structure of finite primary groups all 2-maximal subgroups of which are abelian (Russian). In: Complex analysis, Algebra and Topology, pp. 42–51. Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev (1990)

[14]

Higman G. Enumerating $p$-groups I: problems whose solution is PORC. Proc. Lond. Math. Soc.. 1960, 10 3 24-30

[15]

Higman G. Enumerating $p$-groups II: Inequalities. Proc. London Math. Soc.. 1960, 10 3 566-582

[16]

Huppert B. Endliche Gruppen I. 1967 Berlin: Springer

[17]

Kazarin LS. On certain classes of finite groups. Dokl. Akad. Nauk SSSR (Russian). 1971, 197 773-776

[18]

Li, P.J., Qu, H.P., Zeng, J.W.: Finite $p$-groups whose proper subgroups are of class $\le n$, (submitted)

[19]

Miller GA, Moreno HC. Non-abelian groups in which every subgroup is abelian. Trans. Am. Math. Soc.. 1903, 4 398-404

[20]

O’Brien EA, Vaughan-Lee M. The groups with order $p^7$ for odd prime $p$. J. Algebra. 2005, 292 243-258

[21]

Qu HP, Yang SS, Xu MY, An LJ. Finite $p$-groups with a minimal non-abelian subgroup of index $p$ (I). J. Algebra. 2012, 358 178-188

[22]

Qu HP, Xu MY, An LJ. Finite $p$-groups with a minimal non-abelian subgroup of index $p$ (III). Sci. China Ser. A.. 2015, 58 4 763-780

[23]

Qu HP, Zhao LP, Gao J, An LJ. Finite $p$-groups with a minimal non-abelian subgroup of index $p$ (V). J. Algebra Appl.. 2014, 13 7 1450032

[24]

Rédei L. Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören(German). Commun. Math. Helvet.. 1947, 20 225-264

[25]

Sheriev VA. A description of the class of finite $p$-groups whose 2-maximal subgroups are all abelian II, in Primary groups. Proc. Sem. Algebraic Syst.. 1970, 2 54-76

[26]

Sims CC. Enumerating $p$-groups. Proc. Lond. Math. Soc.. 1994, 69 3 47-71

[27]

Xu MY. A theorem on metabelian $p$-groups and some consequences. Chin. Ann. Math.. 1984, 5B 1-6

[28]

Xu MY. A complete classification of metacyclic $p$-groups of odd order (Chinese). Adv. Math. (Beijing). 1983, 12 72-73

[29]

Xu MY, An LJ, Zhang QH. Finite $p$-groups all of whose non-abelian proper subgroups are generated by two elements. J. Algebra. 2008, 319 3603-3620

[30]

Xu MY, Zhang QH. A classification of metacyclic $2$-groups. Algebra Colloq.. 2006, 131 25-34

[31]

Zhang QH, Sun XJ, An LJ, Xu MY. Finite $p$-groups all of whose subgroups of index $p^2$ are abelian. Algebra Colloq.. 2008, 15 1 167-180

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/