Rigidity Results on Lagrangian and Symplectic Translating Solitons

Jun Sun

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (1) : 63 -68.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (1) : 63 -68. DOI: 10.1007/s40304-015-0052-3
Article

Rigidity Results on Lagrangian and Symplectic Translating Solitons

Author information +
History +
PDF

Abstract

In this short note, we prove that an almost calibrated Lagrangian translating soliton must be a plane if it has weighted integrable mean curvature vector or weighted quadratic area growth. Similar results are also true for symplectic translating solitons.

Keywords

Rigidity / Translating soliton / Almost calibrated Lagrangian / Symplectic

Cite this article

Download citation ▾
Jun Sun. Rigidity Results on Lagrangian and Symplectic Translating Solitons. Communications in Mathematics and Statistics, 2015, 3(1): 63-68 DOI:10.1007/s40304-015-0052-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Li J. Mean curvature flow of surfaces in 4-manifolds. Adv. Math.. 2001, 163 287-309

[2]

Chen J, Li J. Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math.. 2004, 156 1 25-51

[3]

Hamilton RS. Harnack estimate for the mean curvature flow. J. Differ. Geom.. 1995, 41 215-226

[4]

Han X, Li J. Translating solitons to symplectic and Lagrangian mean curvature flows. Int. J. Math.. 2009, 20 4 443-458

[5]

Han X, Sun J. Translating solitons to symplectic mean curvature flows. Ann. Glob. Anal. Geom.. 2010, 38 161-169

[6]

Huisken G, Sinestrari C. Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math.. 1999, 183 1 45-70

[7]

Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc. Var. Part. Differ. Equ.. 1999, 8 1 1-14

[8]

Neves A, Tian G. Translating solutions to Lagrangian mean curvature flow. Trans. Am. Math. Soc.. 2013, 365 11 5655-5680

[9]

Sun J. A gap theorem for translating solitons to Lagrangian mean curvature flow. Differ. Geom. Appl.. 2013, 31 568-576

[10]

Sun J. Mean curvature decay in symplectic and Lagrangian translating solitons. Geom. Dedicata. 2014, 172 207-215

[11]

Wang M-T. Mean curvature flow of surfaces in Einstein four manifolds. J. Differ. Geom.. 2001, 57 301-338

[12]

White B. The nature of singularities in mean curvature flow of mean-convex sets. J. Am. Math. Soc.. 2003, 16 123-138

[13]

Xin, Y. L.: The translating soliton of mean curvature flow, preprint, arXiv:1410.5063v1

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/