A Note on Double Minimality

Wen Huang , Xiangdong Ye

Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (1) : 57 -61.

PDF
Communications in Mathematics and Statistics ›› 2015, Vol. 3 ›› Issue (1) : 57 -61. DOI: 10.1007/s40304-015-0051-4
Article

A Note on Double Minimality

Author information +
History +
PDF

Abstract

It is known that a minimal prime system is either a subshift or with a connected phase space (Keynes and Newton Trans Am Math Soc 217:237–255, 1976). We show that a double minimal system is a subshift; this implies immediately that no non-periodic map has 4-fold topological minimal self-joinings. We also prove that a POD system is either uniformly rigid or is a subshift.

Keywords

Double minimal / POD / Uniformly rigid

Cite this article

Download citation ▾
Wen Huang, Xiangdong Ye. A Note on Double Minimality. Communications in Mathematics and Statistics, 2015, 3(1): 57-61 DOI:10.1007/s40304-015-0051-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akin, E., Auslander, J., Berg, K.: When is a transitive map chaotic? Convergence in ergodic theory and probability (Columbus, OH, 1993), 25–40, Ohio State Univ. Math. Res. Inst. Publ., vol. 5. de Gruyter, Berlin (1996)

[2]

Auslander J, Markley N. Isomorphism classes of products of powers for graphic flows. Ergod. Theory Dyn. Syst.. 1997, 17 2 297-305

[3]

Furstenberg H, Keynes HB, Shapiro L. Prime flows in topological dynamics. Israel J. Math.. 1973, 14 26-38

[4]

Glasner S, Maon D. Rigidity in topological dynamics. Ergod. Theory Dyn. Syst.. 1989, 9 309-320

[5]

Gottshalk W, Hedlund G. Topological Dynamics. 1955 Providence: AMS Colloquium Publications

[6]

Hochman M. On notions of determinism in topological dynamics. Ergod. Theory Dyn. Syst.. 2012, 32 119-140

[7]

Del Junco A. On minimal self-joinings in topological dynamics. Ergod. Theory Dyn. Syst.. 1987, 7 211-227

[8]

Del Junco A, Keane M. On generic points in the Cartesian square of Chacon’s transformation. Ergod. Theory Dyn. Syst.. 1985, 5 59-69

[9]

Keynes HB, Newton D. Real prime flows. Trans. Am. Math. Soc.. 1976, 217 237-255

[10]

King J. A map with topological minimal self-joinings in the sense of del Junco. Ergod. Theory Dyn. Syst.. 1990, 10 745-761

[11]

Mane R. Expansive homeomorphisms and topologcal dimensional. Trans. Am. Math. Soc.. 1979, 252 313-319

[12]

Weiss B. Multiple recurrence and doubly minimal systems, topological dynamics and applications (Minneapolis, MN, 1995). Contemp. Math.. 1998, 215 189-196

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/