PDF
Abstract
We address the well-posedness of the 2D (Euler)–Boussinesq equations with zero viscosity and positive diffusivity in the polygonal-like domains with Yudovich’s type data, which gives a positive answer to part of the questions raised in Lai (Arch Ration Mech Anal 199(3):739–760, 2011). Our analysis on the the polygonal-like domains essentially relies on the recent elliptic regularity results for such domains proved in Bardos et al. (J Math Anal Appl 407(1):69–89, 2013) and Di Plinio (SIAM J Math Anal 47(1):159–178, 2015).
Keywords
Boussinesq system
/
Euler equations
/
Existence and uniqueness
/
Yudovich’s type data
/
Initial-boundary value problem
Cite this article
Download citation ▾
Aimin Huang.
The 2D Euler–Boussinesq Equations in Planar Polygonal Domains with Yudovich’s Type Data.
Communications in Mathematics and Statistics, 2014, 2(3-4): 369-391 DOI:10.1007/s40304-015-0045-2
| [1] |
Lai M-J, Pan R, Zhao K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal.. 2011, 199 3 739-760
|
| [2] |
Bardos, C., Di Plinio, F., Temam, R.: The Euler equations in planar nonsmooth convex domains. J. Math. Anal. Appl. 407(1), 69–89 (2013)
|
| [3] |
Di Plinio F, Temam R. Grisvard’s shift theorem near $l^\infty $ and Yudovich theory on polygonal domains. SIAM J. Math. Anal.. 2015, 47 1 159-178
|
| [4] |
Cannon, J.R., DiBenedetto, E.: The initial value problem for the Boussinesq equations with data in $L^{p}$. Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn, Paderborn, 1979), Lecture Notes in Math., vol. 771, pp. 129–144. Springer, Berlin (1980)
|
| [5] |
Constantin P, Lewicka M, Ryzhik L. Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions. Nonlinearity. 2006, 19 11 2605-2615
|
| [6] |
Chae D, Nam H-S. Local existence and blow-up criterion for the Boussinesq equations. Proc. R. Soc. Edinburgh Sect. A. 1997, 127 5 935-946
|
| [7] |
Chae D, Jiahong W. The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math.. 2012, 230 4–6 1618-1645
|
| [8] |
Weinan E, Shu C-W. Small-scale structures in Boussinesq convection. Phys. Fluids. 1994, 6 1 49-58
|
| [9] |
Foias C, Manley O, Temam R. Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal.. 1987, 11 8 939-967
|
| [10] |
Guo BL. Spectral method for solving two-dimensional Newton–Boussinesq equations. Acta Math. Appl. Sinica (English Ser.). 1989, 5 3 208-218
|
| [11] |
Kelliher JP, Temam R, Wang X. Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection in porous media. Phys. D. 2011, 240 7 619-628
|
| [12] |
Miranville A, Ziane M. On the dimension of the attractor for the Bénard problem with free surfaces. Russian J. Math. Phys.. 1997, 5 4 489-502
|
| [13] |
Wang, X.: A note on long time behavior of solutions to the Boussinesq system at large Prandtl number. Nonlinear partial differential equations and related analysis. Contemp. Math. 371, 315–323 (2005)
|
| [14] |
Wang X. Asymptotic behavior of the global attractors to the Boussinesq system for Rayleigh-Bénard convection at large Prandtl number. Commun. Pure Appl. Math.. 2007, 60 9 1293-1318
|
| [15] |
Xu X. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete Contin. Dyn. Syst.. 2009, 25 4 1333-1347
|
| [16] |
Chae D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math.. 2006, 203 2 497-513
|
| [17] |
Danchin R, Paicu M. Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys.. 2009, 290 1 1-14
|
| [18] |
Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differ. Equat.. 2007, 12 4 461-480
|
| [19] |
Hmidi T, Keraani S. On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J.. 2009, 58 4 1591-1618
|
| [20] |
Hmidi T, Keraani S, Rousset F. Global well-posedness for Euler–Boussinesq system with critical dissipation. Comm. Partial Differ. Equat.. 2011, 36 3 420-445
|
| [21] |
Hou TY, Li C. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst.. 2005, 12 1 1-12
|
| [22] |
Hu W, Kukavica I, Ziane M. On the regularity for the Boussinesq equations in a bounded domain. J. Math. Phys.. 2013, 54 8 081507
|
| [23] |
Zhao K. 2d inviscid heat conductive boussinesq equations on a bounded domain. Michigan Math. J.. 2010, 59 2 329-352
|
| [24] |
Adhikari D, Cao C, Wu J. Global regularity results for the 2d boussinesq equations with vertical dissipation. J. Differ. Equat.. 2011, 251 6 1637-1655
|
| [25] |
Cao C, Jiahong W. Global regularity for the two-dimensional anisotropic boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal.. 2013, 208 3 985-1004
|
| [26] |
Danchin R, Paicu M. Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci.. 2011, 21 3 421-457
|
| [27] |
Miao C, Zheng X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Commun. in Math. Phys.. 2013, 321 1 33-67
|
| [28] |
Lorca S, Boldrini J. Lorca and José Luiz Boldrini, stationary solutions for generalized Boussinesq models. J. Differ. Equat.. 1996, 124 2 389-406
|
| [29] |
Huang A. The global well-posedness and global attractor for the solutions to the 2d Boussinesq system with variable viscosity and thermal diffusivity. Nonlinear Anal.. 2015, 113 401-429
|
| [30] |
Lorca SA, Boldrini JL. The initial value problem for a generalized boussinesq model. Nonlinear Anal.. 1999, 36 4 457-480
|
| [31] |
Li, H., Pan, R. Zhang, W.: Initial boundary value problem for 2d boussinesq equations with temperature-dependent heat diffusion (2013) (preprint)
|
| [32] |
Sun Y, Zhang Z. Global regularity for the initial-boundary value problem of the 2-d Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equat.. 2013, 255 6 1069-1085
|
| [33] |
James P. Kelliher, On the flow map for 2D Euler equations with unbounded vorticity. Nonlinearity. 2011, 24 9 2599-2637
|
| [34] |
Yudovich VI. Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčhisl. Mat. i Mat. Fiz.. 1963, 3 1032-1066
|
| [35] |
Yudovich VI. Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett.. 1995, 2 1 27-38
|
| [36] |
Grisvard P. Elliptic Problems in Nonsmooth Domains. 1985 Boston: Pitman
|
| [37] |
Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 1997 2 New York: Springer-Verlag
|
| [38] |
Bardos C. Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl.. 1972, 40 769-790
|
| [39] |
Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001) (Reprint of the 1984 edition)
|
| [40] |
Geng J, Shen Z. The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal.. 2010, 259 8 2147-2164
|
| [41] |
Fabes E, Mendez O, Mitrea M. Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal.. 1998, 159 2 323-368
|
| [42] |
Rao MM, Ren ZD. Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics. 1991 New York: Marcel Dekker Inc.
|
| [43] |
Wilson M. Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics. 2008 Berlin: Springer
|
| [44] |
Chang D-C, Dafni G, Stein EM. Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in $\mathbb{R}^n$. Trans. Am. Math. Soc.. 1999, 351 4 1605-1661
|
| [45] |
Kato T. On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Ration. Mech. Anal.. 1967, 25 188-200
|
| [46] |
Lions J-L. Quelques méthodes de résolution des problèmes aux limites non linéaires. 1969 Paris: Dunod
|
| [47] |
Lions J-L, Magenes E. Non-homogeneous boundary value problems and applications. 1972 New York: Springer-Verlag
|
| [48] |
Kim AS, Shen Z. The Neumann problem in $L^p$ on Lipschitz and convex domains. J. Funct. Anal.. 2008, 255 7 1817-1830
|