The 2D Euler–Boussinesq Equations in Planar Polygonal Domains with Yudovich’s Type Data

Aimin Huang

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 369 -391.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 369 -391. DOI: 10.1007/s40304-015-0045-2
Article

The 2D Euler–Boussinesq Equations in Planar Polygonal Domains with Yudovich’s Type Data

Author information +
History +
PDF

Abstract

We address the well-posedness of the 2D (Euler)–Boussinesq equations with zero viscosity and positive diffusivity in the polygonal-like domains with Yudovich’s type data, which gives a positive answer to part of the questions raised in Lai (Arch Ration Mech Anal 199(3):739–760, 2011). Our analysis on the the polygonal-like domains essentially relies on the recent elliptic regularity results for such domains proved in Bardos et al. (J Math Anal Appl 407(1):69–89, 2013) and Di Plinio (SIAM J Math Anal 47(1):159–178, 2015).

Keywords

Boussinesq system / Euler equations / Existence and uniqueness / Yudovich’s type data / Initial-boundary value problem

Cite this article

Download citation ▾
Aimin Huang. The 2D Euler–Boussinesq Equations in Planar Polygonal Domains with Yudovich’s Type Data. Communications in Mathematics and Statistics, 2014, 2(3-4): 369-391 DOI:10.1007/s40304-015-0045-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lai M-J, Pan R, Zhao K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal.. 2011, 199 3 739-760

[2]

Bardos, C., Di Plinio, F., Temam, R.: The Euler equations in planar nonsmooth convex domains. J. Math. Anal. Appl. 407(1), 69–89 (2013)

[3]

Di Plinio F, Temam R. Grisvard’s shift theorem near $l^\infty $ and Yudovich theory on polygonal domains. SIAM J. Math. Anal.. 2015, 47 1 159-178

[4]

Cannon, J.R., DiBenedetto, E.: The initial value problem for the Boussinesq equations with data in $L^{p}$. Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn, Paderborn, 1979), Lecture Notes in Math., vol. 771, pp. 129–144. Springer, Berlin (1980)

[5]

Constantin P, Lewicka M, Ryzhik L. Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions. Nonlinearity. 2006, 19 11 2605-2615

[6]

Chae D, Nam H-S. Local existence and blow-up criterion for the Boussinesq equations. Proc. R. Soc. Edinburgh Sect. A. 1997, 127 5 935-946

[7]

Chae D, Jiahong W. The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math.. 2012, 230 4–6 1618-1645

[8]

Weinan E, Shu C-W. Small-scale structures in Boussinesq convection. Phys. Fluids. 1994, 6 1 49-58

[9]

Foias C, Manley O, Temam R. Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal.. 1987, 11 8 939-967

[10]

Guo BL. Spectral method for solving two-dimensional Newton–Boussinesq equations. Acta Math. Appl. Sinica (English Ser.). 1989, 5 3 208-218

[11]

Kelliher JP, Temam R, Wang X. Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection in porous media. Phys. D. 2011, 240 7 619-628

[12]

Miranville A, Ziane M. On the dimension of the attractor for the Bénard problem with free surfaces. Russian J. Math. Phys.. 1997, 5 4 489-502

[13]

Wang, X.: A note on long time behavior of solutions to the Boussinesq system at large Prandtl number. Nonlinear partial differential equations and related analysis. Contemp. Math. 371, 315–323 (2005)

[14]

Wang X. Asymptotic behavior of the global attractors to the Boussinesq system for Rayleigh-Bénard convection at large Prandtl number. Commun. Pure Appl. Math.. 2007, 60 9 1293-1318

[15]

Xu X. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete Contin. Dyn. Syst.. 2009, 25 4 1333-1347

[16]

Chae D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math.. 2006, 203 2 497-513

[17]

Danchin R, Paicu M. Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys.. 2009, 290 1 1-14

[18]

Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differ. Equat.. 2007, 12 4 461-480

[19]

Hmidi T, Keraani S. On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J.. 2009, 58 4 1591-1618

[20]

Hmidi T, Keraani S, Rousset F. Global well-posedness for Euler–Boussinesq system with critical dissipation. Comm. Partial Differ. Equat.. 2011, 36 3 420-445

[21]

Hou TY, Li C. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst.. 2005, 12 1 1-12

[22]

Hu W, Kukavica I, Ziane M. On the regularity for the Boussinesq equations in a bounded domain. J. Math. Phys.. 2013, 54 8 081507

[23]

Zhao K. 2d inviscid heat conductive boussinesq equations on a bounded domain. Michigan Math. J.. 2010, 59 2 329-352

[24]

Adhikari D, Cao C, Wu J. Global regularity results for the 2d boussinesq equations with vertical dissipation. J. Differ. Equat.. 2011, 251 6 1637-1655

[25]

Cao C, Jiahong W. Global regularity for the two-dimensional anisotropic boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal.. 2013, 208 3 985-1004

[26]

Danchin R, Paicu M. Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci.. 2011, 21 3 421-457

[27]

Miao C, Zheng X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Commun. in Math. Phys.. 2013, 321 1 33-67

[28]

Lorca S, Boldrini J. Lorca and José Luiz Boldrini, stationary solutions for generalized Boussinesq models. J. Differ. Equat.. 1996, 124 2 389-406

[29]

Huang A. The global well-posedness and global attractor for the solutions to the 2d Boussinesq system with variable viscosity and thermal diffusivity. Nonlinear Anal.. 2015, 113 401-429

[30]

Lorca SA, Boldrini JL. The initial value problem for a generalized boussinesq model. Nonlinear Anal.. 1999, 36 4 457-480

[31]

Li, H., Pan, R. Zhang, W.: Initial boundary value problem for 2d boussinesq equations with temperature-dependent heat diffusion (2013) (preprint)

[32]

Sun Y, Zhang Z. Global regularity for the initial-boundary value problem of the 2-d Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equat.. 2013, 255 6 1069-1085

[33]

James P. Kelliher, On the flow map for 2D Euler equations with unbounded vorticity. Nonlinearity. 2011, 24 9 2599-2637

[34]

Yudovich VI. Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčhisl. Mat. i Mat. Fiz.. 1963, 3 1032-1066

[35]

Yudovich VI. Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett.. 1995, 2 1 27-38

[36]

Grisvard P. Elliptic Problems in Nonsmooth Domains. 1985 Boston: Pitman

[37]

Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 1997 2 New York: Springer-Verlag

[38]

Bardos C. Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl.. 1972, 40 769-790

[39]

Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001) (Reprint of the 1984 edition)

[40]

Geng J, Shen Z. The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal.. 2010, 259 8 2147-2164

[41]

Fabes E, Mendez O, Mitrea M. Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal.. 1998, 159 2 323-368

[42]

Rao MM, Ren ZD. Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics. 1991 New York: Marcel Dekker Inc.

[43]

Wilson M. Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics. 2008 Berlin: Springer

[44]

Chang D-C, Dafni G, Stein EM. Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in $\mathbb{R}^n$. Trans. Am. Math. Soc.. 1999, 351 4 1605-1661

[45]

Kato T. On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Ration. Mech. Anal.. 1967, 25 188-200

[46]

Lions J-L. Quelques méthodes de résolution des problèmes aux limites non linéaires. 1969 Paris: Dunod

[47]

Lions J-L, Magenes E. Non-homogeneous boundary value problems and applications. 1972 New York: Springer-Verlag

[48]

Kim AS, Shen Z. The Neumann problem in $L^p$ on Lipschitz and convex domains. J. Funct. Anal.. 2008, 255 7 1817-1830

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/