The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $\lambda _0(g_0)=0$

Rugang Ye

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 363 -368.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 363 -368. DOI: 10.1007/s40304-015-0044-3
Article

The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $\lambda _0(g_0)=0$

Author information +
History +
PDF

Abstract

A uniform logarithmic Sobolev inequality, a uniform Sobolev inequality and a uniform $\kappa $-noncollapsing estimate along the Ricci flow are established in the situation that a certain smallest eigenvalue for the initial metric is zero.

Keywords

Uniform / Logarithmic Sobolev inequality / Sobolev inequality / Ricci flow / Eigenvalue

Cite this article

Download citation ▾
Rugang Ye. The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $\lambda _0(g_0)=0$. Communications in Mathematics and Statistics, 2014, 2(3-4): 363-368 DOI:10.1007/s40304-015-0044-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chow, B., Knopf, D.: The Ricci flow: An introduction. Mathematical surveys and monographs. Am. Math. Soc. 110 (2004)

[2]

Guenther C, Isenberg J, Knopf D. Stability of the Ricci flow at Ricci flat metrics. Commun. Anal. Geom.. 2002, 10 741-777

[3]

Hamilton, R.S.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117, 545–572 (1995)

[4]

Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. November (2002), http://arxiv.org/abs/math.DG/0211159v1

[5]

Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. arXiv:0707.2424

[6]

Ye, R.: The logarithmic Sobolev inequality along the Ricci flow in dimension 2. July (2007) arXiv:0708.2003

[7]

Ye R. Ricci flow, Einstein metrics and space forms. Trans. Am. Math. Soc.. 1993, 338 871-895

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/