Hölder Estimates for Nonlocal-Diffusion Equations with Drifts

Zhen-Qing Chen , Xicheng Zhang

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 331 -348.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 331 -348. DOI: 10.1007/s40304-015-0042-5
Article

Hölder Estimates for Nonlocal-Diffusion Equations with Drifts

Author information +
History +
PDF

Abstract

We study a class of nonlocal-diffusion equations with drifts, and derive a priori $\Phi $-Hölder estimate for the solutions by using a purely probabilistic argument, where $\Phi $ is an intrinsic scaling function for the equation.

Keywords

Parabolic function / Hölder regularity / Nonlocal operator / Drift / Space-time Hunt process / Lévy system

Cite this article

Download citation ▾
Zhen-Qing Chen, Xicheng Zhang. Hölder Estimates for Nonlocal-Diffusion Equations with Drifts. Communications in Mathematics and Statistics, 2014, 2(3-4): 331-348 DOI:10.1007/s40304-015-0042-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abels H, Kassmann M. The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels. Osaka J. Math.. 2009, 46 661-683

[2]

Bass RF, Levin DL. Harnack inequalities for jump processes. Potential Anal.. 2002, 17 375-388

[3]

Bingham NH, Goldie CM, Teugels JL. Regular Variation. 1987 Cambridge: Cambridge University Press

[4]

Chen Z-Q, Kim P, Song R. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Ann. Probab.. 2012, 40 2483-2538

[5]

Chen Z-Q, Kumagai T. Heat kernel estimates for stable-like processes on $d$-sets. Stoch. Process Appl.. 2003, 108 27-62

[6]

Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields. 2008, 140 277-317

[7]

Chen, Z.-Q., Wang, L.: Uniqueness of stable processes with drift. arXiv:1309.6414

[8]

Chen, Z.-Q., Zhang, X.: Uniqueness of stable-like processes. In preparation

[9]

Epstein, C.L., Pop, C.A.: Regularity for the supercritical fractional Laplacian with drift. arXiv:1309.5892v2 [math.AP]

[10]

Ethier SN, Kurtz TG. Markov Processes: Characterization and Convergence. 1986 New York: Wiley & Sons

[11]

Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. arXiv:1310.5371v2

[12]

Krylov NV, Safonov MV. An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR. 1979, 245 18-20

[13]

Silvestre L. Hölder estimates for advection fractional-diffusion equations. Annali della Scuola Normale Superiore di Pisa Classe di Scienze. 2012, 11 4 843-855

[14]

Zhang X. $L^p$-maximal regularity of nonlocal parabolic equation and applications. Annales de l’Institut Henri Poincare Analyse non lineaire. 2013, 30 573-614

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/