Hölder Estimates for Nonlocal-Diffusion Equations with Drifts
Zhen-Qing Chen , Xicheng Zhang
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 331 -348.
Hölder Estimates for Nonlocal-Diffusion Equations with Drifts
We study a class of nonlocal-diffusion equations with drifts, and derive a priori $\Phi $-Hölder estimate for the solutions by using a purely probabilistic argument, where $\Phi $ is an intrinsic scaling function for the equation.
Parabolic function / Hölder regularity / Nonlocal operator / Drift / Space-time Hunt process / Lévy system
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Chen, Z.-Q., Wang, L.: Uniqueness of stable processes with drift. arXiv:1309.6414 |
| [8] |
Chen, Z.-Q., Zhang, X.: Uniqueness of stable-like processes. In preparation |
| [9] |
Epstein, C.L., Pop, C.A.: Regularity for the supercritical fractional Laplacian with drift. arXiv:1309.5892v2 [math.AP] |
| [10] |
|
| [11] |
Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. arXiv:1310.5371v2 |
| [12] |
|
| [13] |
|
| [14] |
|
/
| 〈 |
|
〉 |