$\eta $ invariant,Analytic torsion" /> $\eta $ invariant" /> $\eta $ invariant,Analytic torsion" />

The Mathematical Work of V. K. Patodi

Weiping Zhang

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 253 -277.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 253 -277. DOI: 10.1007/s40304-014-0039-5
Article

The Mathematical Work of V. K. Patodi

Author information +
History +
PDF

Abstract

We give a brief survey on aspects of the local index theory as developed from the mathematical works of V. K. Patodi. It is dedicated to the 70th anniversary of Patodi.

Keywords

Survey / Patodi / Local index / $\eta $ invariant')">$\eta $ invariant / Analytic torsion

Cite this article

Download citation ▾
Weiping Zhang. The Mathematical Work of V. K. Patodi. Communications in Mathematics and Statistics, 2014, 2(3-4): 253-277 DOI:10.1007/s40304-014-0039-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patodi, V.K.: Collected Papers. In: Atiyah, M.F., Narasimhan, M.S. (eds.) World Scientific (1996)

[2]

Patodi VK. Curvature and eigenforms of the Laplace operator. J. Differ. Geom.. 1971, 5 233-249

[3]

Patodi VK. An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Differ. Geom.. 1971, 5 251-283

[4]

Patodi VK. Curvature and the fundamental solution of the heat operator. J. Indian Math. Soc.. 1970, 34 251-283

[5]

Patodi, V. K., (with Atiyah, M. F., Bott, R.): On the heat equations and the index theorem. Invent. Math. 19, 279–330 (1973). Errata. loc. cit. 28, 277–280 (1975)

[6]

Patodi VK. Holomorphic Lefschetz fixed point formula. Bull. Am. Math. Soc.. 1973, 79 825-828

[7]

Patodi, V.K. (with Atiyah, M. F., Singer, I. M.): Spectral asymmetry and Riemannian geometry. Bull. London Math. Soc. 5, 229–234 (1973)

[8]

Patodi, V.K. (with Atiyah, M. F., Singer, I. M.): Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Phil. Soc. 77, 43–69 (1975)

[9]

Patodi, V.K. (with Atiyah, M. F., Singer, I. M.): Spectral asymmetry and Riemannian geometry, II. Math. Proc. Cambridge Phil. Soc. 78, 405–432 (1975)

[10]

Patodi, V.K. (with Atiyah, M. F., Singer, I. M.): Spectral asymmetry and Riemannian geometry, III. Math. Proc. Cambridge Phil. Soc. 79, 71–99 (1976)

[11]

Patodi, V.K.: Riemannian structures and triangulations of manifolds. In: Proceedings of the ICM1974, Vancouver (1974)

[12]

Patodi VK. A combinatorial formula for Pontrjagin classes. Istituto Nazionale di Alta Matematica. Symposia Matematica. 1976, 20 497-505

[13]

Patodi, V.K. (with Dodziuk, J.): Riemannian structures and triangulations of manifolds. J. Indian Math. Soc. 40, 1–52 (1976)

[14]

Patodi, V.K. (with Donnelly, H.): Spectrum and the fixed point set of isometries II. Topology 16, 1–11 (1977)

[15]

Alvarez-Gaumé L. Supersymmetry and the Atiyah–Singer index theorem. Commun. Math. Phys.. 1983, 90 161-173

[16]

Atiyah MF. Collected Works. 1988 Oxford: Clarendon Press

[17]

Atiyah MF. Circular symmetry and stationary phase approximation. Astérisque. 1985, 131 43-59

[18]

Atiyah MF. The logarithm of the Dedekind $\eta $-function. Math. Ann.. 1987, 278 333-380

[19]

Atiyah, M.F., Bott, R.: The index theorem for manifolds with boundary. In: Differential Analysis (papers presented at the Bombay Colloquium), pp. 175–186. Oxford University Press, Oxford (1964)

[20]

Atiyah MF, Bott R. A Lefschetz fixed point foormula for elliptic complexes I. Ann. Math.. 1967, 86 374-407

[21]

Atiyah MF, Bott R. A Lefschetz fixed point foormula for elliptic complexes II. Ann. Math.. 1968, 88 451-491

[22]

Atiyah MF, Donnelly H, Singer IM. Eta invariants, signature defects of cusps, and values of $L$-functions. Ann. Math.. 1983, 118 131-177

[23]

Atiyah MF, Hirzebruch F. Riemann-Roch theorems for differentiable manifolds. Bull. Am. Math. Soc.. 1959, 65 276-281

[24]

Atiyah MF, Segal GB. The index of elliptic operators II. Ann. Math.. 1968, 87 531-545

[25]

Atiyah MF, Singer IM. The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc.. 1963, 69 422-433

[26]

Atiyah, M.F., Singer, I.M.: The index of elliptic operators I. Ann. Math. 87, 484–530 (1968)

[27]

Atiyah, M.F., Singer, I.M.: The index of elliptic operators III. Ann. Math. 87, 546–604 (1968)

[28]

Atiyah MF, Singer IM. The index of elliptic operators IV. Ann. Math.. 1971, 93 119-138

[29]

Bar-Natan D, Witten E. Perturbative expansion of Chern–Simons theory with non-compact gauge group. Commun. Math. Phys.. 1991, 141 423-440

[30]

Baum, P., Douglas, R. G.: $K$-homology and index theory. In: Proceedings of the Symposium on Pure and Application Mathathematics, vol. 38, pp. 117–173. American Mathematical Society, Providence (1982)

[31]

Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. In: Grundl. Math. Wiss. Band 298, Springer-Verlag, Berlin (1992)

[32]

Berline N, Vergne M. A computation of the equivariant index of the Dirac operator. Bull. Soc. Math. France. 1985, 113 305-345

[33]

Bismut, J.-M.: The Atiyah-Singer index theorem: a probabilitistic approach I. J. Funct. Anal. 57, 56–99 (1984)

[34]

Bismut, J.-M.: The Atiyah-Singer index theorem: a probabilitistic approach II. J. Funct. Anal. 57, 329–348 (1984)

[35]

Bismut J-M. The index theorem for families of Dirac operators: two heat equation proofs. Invent. Math.. 1986, 83 91-151

[36]

Bismut, J.-M.: Index theorem and the heat equation. In: Proceedings of the ICM-1986, Berkeley (1986)

[37]

Bismut, J.-M.: Local index theory and higher analytic torsion. In: Proceedings of the ICM1998 in Documenta Mathematica Extra, vol. I, pp. 143–162 (1998)

[38]

Bismut J-M. The hypoelliptic Laplacian on the cotangent bundle. J. Am. Math. Soc.. 2005, 18 379-476

[39]

Bismut, J.-M.: The hypoelliptic Dirac operator. In: Geometry and Dynamics of Groups and Spaces. Progress in Math, vol. 265, pp. 113–246. Birkhäuser, Basel (2008)

[40]

Bismut J-M. Loop spaces and the hypoelliptic Laplacian. Commun. Pure Appl. Math.. 2008, 61 559-593

[41]

Bismut, J.-M.: Hypoelliptic Laplacian and Orbital Integrals. Annals of Mathematics Studies, vol. 177. Princeton University Press, Princeton (2011)

[42]

Bismut, J.-M.: Index theory and the hypoelliptic Laplacian. In: Metric and Differential Geometry. Progress in Mathemathis, vol. 297, pp. 181–232. Birkhuser/Springer, Basel (2012)

[43]

Bismut, J.-M.: Hypoelliptic Laplacian and Bott–Chern cohomology. A theorem of Riemann–Roch–Grothendieck in complex geometry. Progress in Mathematics, vol. 305. Birkhuser/Springer, Cham (2013). xvi+203 pp

[44]

Bismut J-M, Cheeger J. $\eta $-invariants and their adiabatic limits. J. Am. Math. Soc.. 1989, 2 33-70

[45]

Bismut J-M, Cheeger J. Families index for manifolds with boundary: I. J. Funct. Anal.. 1990, 89 313-363

[46]

Bismut J-M, Cheeger J. Families index for manifolds with boundary: II. J. Funct. Anal.. 1990, 90 306-354

[47]

Bismut JM, Cheeger J. Lawson B, Tenenblat K. Remarks on the index theorem for families of Dirac operators on manifolds with boundary. Differential Geometry. A symposium in honor of Manfredo do Carmo. 1991 Harlow: Longman Scientific & Technical. 59-83

[48]

Bismut J-M, Cheeger J. Trangressed Euler classes of $SL(2n, { Z})$ vector bundles, adiabatic limits of eta invariants and special values of $L$-functions. Ann. Sci. École Norm. Sup.. 1992, 25 335-391

[49]

Bismut J-M, Freed DS. The analysis of elliptic families I. Commun. Math. Phys.. 1986, 106 159-176

[50]

Bismut J-M, Freed DS. The analysis of elliptic families II. Commun. Math. Phys.. 1986, 107 103-163

[51]

Bismut, J.-M., Goette, S.: Families Torsion and Morse Functions. Astérisque, tom. 275. Société Mathématique, Paris (2001)

[52]

Bismut, J.-M., Lebeau, G.: The Hypoelliptic Laplacian and Ray–Singer Metrics. Annals of Mathematics Studies, vol. 167. Princeton University Press, Princeton (2008)

[53]

Bismut J-M, Lott J. Flat vector bundles, direct images and higher real analytic torsion. J. Am. Math. Soc.. 1995, 8 291-363

[54]

Bismut, J.-M., Zhang, W.: An Extension of a Theorem by Cheeger and Müller. Astérisque, tom. 205. Société Mathématique, Paris (1992)

[55]

Bismut J-M, Zhang W. Real embeddings and eta invariant. Math. Ann.. 1993, 295 661-684

[56]

Booß-Bavnbek B, Wojciechowski K. Elliptic Boundary Problems for Dirac Operators, Mathematics: Theory & Applications. 1993 Boston: Birkhäuser Boston Inc.

[57]

Brüning J, Ma X. An anomaly formula for Ray–Singer metrics on manifolds with boundary. Geom. Funct. Anal.. 2006, 16 767-837

[58]

Brüning, J., Ma, X.: On the gluing formula for the analytic torsion. Math. Z. 273, 1085–1117 (2013). Erratum. loc. cit. 278, 615–616 (2014)

[59]

Bunke U. A glueing formula for the $\eta $ invariant. J. Differ. Geom.. 1995, 41 397-448

[60]

Cheeger J. Analytic torsion and the heat equation. Ann. Math.. 1979, 109 259-312

[61]

Cheeger, J.: On the formulas of Atiyah–Patodi-Singer and Witten. In: Proceedings of the ICM-1986, Berkeley (1986)

[62]

Cheeger J. $\eta $-invariants, the adiabatic approximation and conical singularities. J. Differ. Geom.. 1987, 26 175-221

[63]

Chern SS. A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math.. 1945, 45 741-752

[64]

Chern SS, Simons J. Characteristic forms and geometric invariants. Ann. Math.. 1974, 99 48-69

[65]

Dai X. Adiabatic limits, the non-multiplicativity of signature and Leray spectral sequence. J. Am. Math. Soc.. 1991, 4 265-321

[66]

Dai, X., Freed, D.S.: Eta invariants and determinant lines. J. Math. Phys. 35, 5155–5194 (1994). Erratum. loc. cit. 42, 2343–2344 (2001)

[67]

Dai X, Zhang W. Circle bundles and the Kreck–Stolz invariant. Trans. Am. Math. Soc.. 1995, 347 3587-3593

[68]

Dai X, Zhang W. Higher spectral flow. J. Funct. Anal.. 1998, 157 432-469

[69]

Dai X, Zhang W. Real embeddings and the Atiyah–Patodi–Singer index theorem for Dirac operators. Asian J. Math.. 2000, 4 775-794

[70]

Dai X, Zhang W. An index theorem for Toeplitz operators on odd-dimensional manifolds with boundary. J. Funct. Anal.. 2006, 238 1-26

[71]

Dai X, Zhang W. Adiabatic limit, Bismut–Freed connection, and the real analytic torsion form. J. Reine Angew. Math.. 2010, 647 87-113

[72]

Dodziuk J. Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math.. 1976, 98 79-104

[73]

Douglas RG, Wojciechowski KP. Adiabatic limits of the $\eta $ invariants: odd-dimensional Atiyah–Patodi–Singer problem. Commun. Math. Phys.. 1991, 142 139-168

[74]

Duistermaat, J. J., Heckman, G.: On the variation in the chohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982). Addendum. 72, 153–158 (1983)

[75]

Feng H, Xu G, Zhang W. Real embeddings, $\eta $-invariant and Chern–Simons current. Pure Appl. Math. Quart.. 2009, 5 1113-1137

[76]

Freed DS, Lott J. An index theorem in differential $K$-theory. Geom. Topol.. 2010, 14 903-966

[77]

Friedan D, Windey H. Supersymmetric derivation of the Atiyah–Singer index and the chiral anomaly. Nuclear Phys. B. 1984, 235 395-416

[78]

Getzler E. Pseudoddiferential operators on super manifolds and the index theorem. Commun. Math. Phys.. 1983, 92 163-178

[79]

Getzler E. A short proof of the local Atiyah–Singer index theorem. Topology. 1986, 25 111-117

[80]

Gilkey PB. Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math.. 1973, 10 344-382

[81]

Gilkey PB. Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds. Adv. Math.. 1973, 11 311-325

[82]

Gilkey PB. On the index of geometrical operators for Riemannian manifolds with boundary. Adv. Math.. 1993, 102 129-183

[83]

Goette, S.: Torsion invariants for families. In: Dai, X., Leandre, R., Ma, X., Zhang, W. (eds.) From Probability to Geometry (II): Volume in Honor of the 60th Birthday of Jean-Michel Bismut, pp. 161–206. Astérisque, Tom. 328. Société Mathématique, Paris (2009)

[84]

Goette, S.: Computations and applications of $\eta $ invariants. In: Bär, C., Lohkamp, J., Schwarz, M. (eds.) Global Differential Geometry. Springer Proceedings in Mathematics, pp. 401–433. Springer-Verlag, Berlin (2012)

[85]

Hirzebruch, F.: Topological Methods in Algebraic Geometry. 3rd ed. Grundl. Math. Wiss. Band 131. Springer, Berlin (1966)

[86]

Hirzebruch F. Hilbert modular surfaces. L’Enseignement Math.. 1973, 19 183-281

[87]

Kirk P, Lesch M. The $\eta $-invariant, Maslov index, and spectral flow for Dirac type operators on manifolds with boundary. Forum Math.. 2004, 16 553-629

[88]

Lafferty JD, Yu Y, Zhang W. A direct geometric proof of the Lefschetz fixed point formulas. Trans. Am. Math. Soc.. 1992, 329 571-583

[89]

Leichtnam E, Piazza P. Dirac index classes and the noncommutative spectral flow. J. Funct. Anal.. 2003, 200 348-400

[90]

Leichtnam E, Piazza P. Elliptic operators and higher signatures. Ann. Inst. Fourier. 2004, 54 1197-1277

[91]

Lott, J.: R/Z-index theory. Commun. Anal. Geom. 2, 279–311 (1994)

[92]

Ma, X., Zhang, W.: Eta-invariant and flat vector bundles II. In: Griffiths, P. A. (ed.) Inspired by S. S. Chern. Nankai Tracts in Mathematics, Vol. 11. pp. 335–350. World Scientific, Singapore (2006)

[93]

Ma X, Zhang W. Eta-invariants, torsion forms and flat vector bundles. Math. Ann.. 2008, 340 569-624

[94]

Mckean H, Singer IM. Curvature and eigenvalues of the Laplacian. J. Differ. Geom.. 1967, 1 43-69

[95]

Melrose RB. The Atiyah–Patodi-Singer Index Theorem. 1993 Wellesley: A. K. Peters

[96]

Melrose RB, Piazza P. Families of Dirac operators, boundaries and the $b$-calculus. J. Differ. Geom.. 1997, 46 99-180

[97]

Minakshisundaram S, Pleijel A. Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Can. J. Math.. 1949, 1 242-256

[98]

Müller W. Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math.. 1978, 28 233-305

[99]

Müller W. Signature defects of cusps of Hilbert modular varieties and values of $L$-series at $s=1$. J. Differ. Geom.. 1984, 20 55-119

[100]

Müller W. Analytic torsion and R-torsion for unimodular representations. J. Am. Math. Soc.. 1993, 6 721-753

[101]

Müller W. Eta invariants and manifolds with boundary. J. Differ. Geom.. 1994, 40 311-377

[102]

Müller, W.: The eta invariant. Séminaire Bourbaki 787, 1–25 (1993–1994)

[103]

Quillen D. Superconnections and the Chern character. Topology. 1985, 24 89-95

[104]

Quillen D. Determinants of Cauchy–Riemann operators over a Riemann surface. Funct. Anal. Appl.. 1985, 19 31-34

[105]

Ray DB, Singer IM. R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.. 1971, 7 145-210

[106]

Ray DB, Singer IM. Analytic torsion for complex manifolds. Ann. Math.. 1973, 98 154-177

[107]

Reidemeister K. Homotopieringe und Linsenraüm. Hambg. Abhandl.. 1935, 11 102-109

[108]

Shen S. The hypoelliptic Laplacian, analytic torsion and Cheeger-Müller theorem. C. R. Math. Acad. Sci. Paris. 2014, 352 153-156

[109]

Singer, I. M.: The $\eta $-invariant and the index. In: Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics, vol. 1, pp. 239–258. World Scientific Publishing, Singapore (1987)

[110]

Witten E. Supersymmetry and Morse theory. J. Differ. Geom.. 1982, 17 661-692

[111]

Witten E. Global gravitational anomalies. Commun. Math. Phys.. 1985, 100 197-229

[112]

Witten E. Quantum field theory and the Jones polynomial. Commun. Math. Phys.. 1989, 121 351-399

[113]

Yu YL. Local index theorem for Dirac operator. Acta Math. Sinica (N. S.). 1987, 3 152-169

[114]

Zhang W. Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences. Ann. Inst. Fourier. 1994, 44 249-270

[115]

Zhang W. Lectures on Chern–Weil Theory and Witten Deformations. 2001 Singapore: World Scientific Publishing

[116]

Zhang W. $\eta $-invariant and Chern–Simons current. Chin. Ann. Math.. 2005, 26B 45-56

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/