$R$-Matrix Realization of Two-Parameter Quantum Group $U_{r,s}(\mathfrak {gl}_n)$

Naihuan Jing , Ming Liu

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 211 -230.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (3-4) : 211 -230. DOI: 10.1007/s40304-014-0037-7
Article

$R$-Matrix Realization of Two-Parameter Quantum Group $U_{r,s}(\mathfrak {gl}_n)$

Author information +
History +
PDF

Abstract

We provide a Faddeev–Reshetikhin–Takhtajan’s RTT approach to the quantum group $\mathrm{Fun}(\mathrm{GL}_{r,s}(n))$ and the quantum enveloping algebra $U_{r,s}(\mathfrak {gl}_n)$ corresponding to the two-parameter $R$-matrix. We prove that the quantum determinant ${\det }_{r,s}T$ is a quasi-central element in $\mathrm{Fun}(\mathrm{GL}_{r,s}(n))$ generalizing earlier results of Dipper–Donkin and Du–Parshall–Wang. The explicit formulation provides an interpretation of the deforming parameters, and the quantized algebra $U_{r,s}(R)$ is identified to $U_{r,s}(\mathfrak {gl}_n)$ as the dual algebra. We then construct $n-1$ quasi-central elements in $U_{r,s}(R)$ which are analogs of higher Casimir elements in $U_q(\mathfrak {gl}_n)$.

Keywords

Quantum groups / Determinants / Casimir elements / Yang–Baxter equations

Cite this article

Download citation ▾
Naihuan Jing, Ming Liu. $R$-Matrix Realization of Two-Parameter Quantum Group $U_{r,s}(\mathfrak {gl}_n)$. Communications in Mathematics and Statistics, 2014, 2(3-4): 211-230 DOI:10.1007/s40304-014-0037-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benkart G, Witherspoon S. A Hopf structure for down-up algebras. Math. Z.. 2001, 238 523-553

[2]

Benkart G, Witherspoon S. Two-parameter quantum groups and Drinfeld doubles. Algebr. Represent. Theory. 2004, 7 261-286

[3]

Benkart, G., Witherspoon, S.: Representations of two-parameter quantum groups and Schur–Weyl duality, Hopf algebras. Lecture Notes in pure and Appl. Math, vol. 237, pp. 65–92 (2004)

[4]

Bergeron N, Gao Y, Hu N. Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J. Algebra. 2006, 301 378-405

[5]

Briot C, Ragoucy E. RTT presentation of finite W-algebras. J. Phys. A. 2001, 34 7287-7310

[6]

Chari V, Pressley A. A guide to Quantum Groups. 1994 Cambridge: Cambridge Univ. Press

[7]

Ding J, Frenkel IB. Isomorphism of two realizations of quantum affine algebra $U_q (\widehat{\mathfrak{gl}(n)})$. Commun. Math. Phys.. 1993, 156 277-300

[8]

Dipper R, Donkin S. Quantum $GL_n$. Proc. London Math. Soc. (3). 1991, 63 1 165-211

[9]

Drinfeld V. Hopf algebras and the quantum Yang–Baxter equation. Sov. Math. Dokl.. 1985, 32 254-258

[10]

Drinfeld, V.: Quantum Group. In: Proceedings of the ICM, vol. 1, 2 (Berkeley, Calif.: 1986). Amer. Math. Soc, Providence, RI. pp. 798–820 (1987)

[11]

Du J, Parshall B, Wang J. Two-parameter quantum linear groups and the hyperbolic invariance of q-Schur algebras. J. London Math. Soc (2). 1991, 44 420-436

[12]

Faddeev L, Reshetikhin N, Takhtadzhyan L. Quantization of Lie groups and Lie algebras. Leningr. Math. J.. 1990, 1 193-225

[13]

Hadjiivanov LK, Isaev AP, Ogievetsky OV, Pyatov PN, Todorov IT. Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras. J. Math. Phys.. 1999, 40 427-448

[14]

Hu N, Rosso M, Zhang H. Two-parameter quantum affine algebra $U_{r, s}(\widehat{\mathfrak{sl}}_n)$, Drinfeld realization and quantum affine Lyndon basis. Commun. Math. Phys.. 2008, 278 453-486

[15]

Jimbo M. A q-difference analogue of $U(g)$ and the Yang–Baxter equation. Lett. Math. Phys.. 1985, 10 63-69

[16]

Jing, N., Liu, M.: Fusion procedure for the two-parameter quantum algebra $U_{r, s}(\mathfrak{sl}_n)$, arXiv:1402.3665

[17]

Jing N, Zhang H. Fermionic realization of two-parameter quantum affine algebra $U_{r, s}(\widehat{{sl}}_n)$. Lett. Math. Phys.. 2009, 89 2 159-170

[18]

Molev, A.: Yangians and classical Lie algebras. Math. Surv. and Monograph, 143. AMS, Providence, RI (2007)

[19]

Molev A, Nazarov M, Olshanskii G. Yangians and classical Lie algebras. Rus. Math. Surv.. 1996, 51 205-282

[20]

Takeuchi, M.: A two-parameter quantization of $GL(n)$. Proc. Jpn. Acad. 66(Ser. A), 112–114 (1990)

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/