Sobolev Inequalities, Riesz Transforms, and the Ricci Flow

Rugang Ye

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (2) : 187 -209.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (2) : 187 -209. DOI: 10.1007/s40304-014-0035-9
Article

Sobolev Inequalities, Riesz Transforms, and the Ricci Flow

Author information +
History +
PDF

Abstract

A number of results about deriving further Sobolev inequalities from a given Sobolev inequality are presented. Various techniques are employed, including Bessel potentials and Riesz transforms. Combining these results with the $W^{1,2}$ Sobolev inequality along the Ricci flow established by the author in earlier papers then yields various new Sobolev inequalities along the Ricci flow.

Keywords

Ricci flow / Sobolev inequalities / Riesz transforms

Cite this article

Download citation ▾
Rugang Ye. Sobolev Inequalities, Riesz Transforms, and the Ricci Flow. Communications in Mathematics and Statistics, 2014, 2(2): 187-209 DOI:10.1007/s40304-014-0035-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry, D.: Étude des transfromations de Riesz dans les variété riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, vol. XXI, pp. 137–172. Lecture notes in mathematics, vol. 1247. Springer, Berlin (1987)

[2]

Gallot S. Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque. 1988, 163–164 31-91

[3]

Gallot S. Isoperimetric inequalities based on integral norms of Ricci curvature. Astérisque. 1988, 157–158 191-216

[4]

Gilbarg D, Trudinger NS. Elliptic Partial Differential Equations of Second Order. 1983 2 New York: Springer

[5]

Li XD. Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds. Rev. Mat. Iberoamericana. 2006, 22 2 591-648

[6]

Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv.math/0303109v1 (2003). Accessed March 2003

[7]

Seeley RT. Complex powers of an elliptic operator. Proc. Symp. Pure Math.. 1967, 10 288-307

[8]

Strichartz R. Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal.. 1983, 52 48-79

[9]

Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. arXiv:math/0707.2424

[10]

Ye, R.: The logarithmic Sobolev inequality along the Ricci flow in dimension 2. arXiv:0708.2003

[11]

Ye, R.: The logarithmic Sobolev inequality along the Ricci flow: the case $\lambda _0(g_0)=0$. arXiv:0708.2005

[12]

Ye, R.: The log entropy functional along the Ricci flow. arXiv:0708.2008

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/