Octonion Analysis of Several Variables

Haiyan Wang , Guangbin Ren

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (2) : 163 -185.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (2) : 163 -185. DOI: 10.1007/s40304-014-0034-x
Article

Octonion Analysis of Several Variables

Author information +
History +
PDF

Abstract

The octonions are distinguished in the $M$-theory in which Universe is the usual Minkowski space ${\mathbb {R}}^4$ times a $G_2$ manifold of very small diameter with $G_2$ being the automorphism group of the octonions. The multidimensional octonion analysis is initiated in this article, which extends the theory of several complex variables, such as the Bochner–Martinelli formula, the theory of non-homogeneous Cauchy–Riemann equations, and the Hartogs principle, to the non-commutative and non-associative realm.

Keywords

Several octonionic variables / Bochner–Martinelli formula / Hartogs theorem / Non-homogenous Cauchy–Riemann equations

Cite this article

Download citation ▾
Haiyan Wang, Guangbin Ren. Octonion Analysis of Several Variables. Communications in Mathematics and Statistics, 2014, 2(2): 163-185 DOI:10.1007/s40304-014-0034-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams WW, Berenstein CA, Loustaunau P, Sabadini I, Struppa DC. Regular functions of several quaternionic variables and the Cauchy–Fueter complex. J. Geom. Anal.. 1999, 9 1-15

[2]

Adams WW, Loustaunau P. Analysis of the module determining the properties of regular funcions of several quaternionic variables. Pacific J.. 2001, 196 1-15

[3]

Baez JC. The octonions. Bull. Amer. Math. Soc.. 2002, 39 145-205

[4]

Bossard, G.: Octonionic black holes. arXiv:1203.0530

[5]

Bureš J, Damiano A, Sabadini I. Explicit resolutions for several Fueter operators. J. Geom. Phys.. 2007, 57 765-775

[6]

Colombo, F., Sabadini, I., Sommen, F., Struppa, D C.: Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)

[7]

Colombo F, Souček V, Struppa DC. Invariant resolutions for several Fueter operators. J. Geom. Phys.. 2006, 56 1175-1191

[8]

Gilbarg D, Trudinger NS. Elliptic Partial Differential Equations of Second Order. 2001 Berlin: Springer-Verlag

[9]

Harvey F Reese, Lawson HBlaine Jr. On boundaries of complex analytic varieties. I. Ann. Math.. 1975, 102 2 223-290

[10]

Hörmander L. An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library. 1990 Amsterdam: North-Holland Publishing Co

[11]

Krantz SG. Function Theory of Several Complex Variables. 2001 Providence: AMS Chelsea Publishing

[12]

Kytmanov A. The Bochner-Martinelli Integral and its Applications. 1995 Basel: Birkhäuser Verlag

[13]

Li XM, Peng LZ. The Cauchy integral formulas on the octonions. Bull. Belg. Math. Soc. Simon Stevin. 2002, 9 47-64

[14]

Pertici D. Regular functions of several quaternionic variables. Ann. Mat. Pura Appl.. 1988, 151 4 39-65

[15]

Ren, G. B., Wang, H. Y.: Theory of several Clifford variables: Bochner–Martinelli formula and Hartogs theorem, submitted

[16]

Wang W. On non-homogeneous Cauchy–Fueter equations and Hartogs phenomenon in several quaternionic variables. J. Geom. Phys.. 2008, 58 1203-1210

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/