Moving Multiple Curves/Surfaces Approximation of Mixed Point Clouds

Wenyue Feng , Zhouwang Yang , Jiansong Deng

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (1) : 107 -124.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (1) : 107 -124. DOI: 10.1007/s40304-014-0031-0
Article

Moving Multiple Curves/Surfaces Approximation of Mixed Point Clouds

Author information +
History +
PDF

Abstract

We propose a local model called moving multiple curves/surfaces approximation to separate mixed scanning points received from a thin-wall object, where data from two sides of the object may be mixed due to measurement error. The cases of two curves (including plane curves and space curves) and two surfaces in one model are mainly elaborated, and a lot of examples are tested.

Keywords

Moving multiple curves/Surfaces approximation / Mixed point cloud / Constrained optimization / Surface fitting

Cite this article

Download citation ▾
Wenyue Feng, Zhouwang Yang, Jiansong Deng. Moving Multiple Curves/Surfaces Approximation of Mixed Point Clouds. Communications in Mathematics and Statistics, 2014, 2(1): 107-124 DOI:10.1007/s40304-014-0031-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamson, A., Alexa, M.: Anisotropic point set surfaces. In: Computer Graphics Forum, vol. 25, pp. 717–724. Wiley Online Library (2006)

[2]

Alexa M, Adamson A. Interpolatory point set surfaces-convexity and Hermite data. ACM Trans. Gr. (TOG). 2009, 28 2 20

[3]

Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT. Computing and rendering point set surfaces. Vis. Comput. Gr. IEEE Trans.. 2003, 9 1 3-15

[4]

Amenta N, Kil YJ. Defining point-set surfaces. ACM Trans. Gr. (TOG). 2004, 23 3 264-270

[5]

Bishop CM, Svensén M, Williams CK. Gtm: the generative topographic mapping. Neural comput.. 1998, 10 1 215-234

[6]

Dey, T.K., Sun, J.: An adaptive mls surface for reconstruction with guarantees. In: Symposium on Geometry Processing, pp. 43–52. Vienna (2005)

[7]

do Carmo MP. Differential Geometry of Curves and Surfaces. 1976 Englewood Cliffs: Prentice-Hall

[8]

Farin GE. Curves and Surfaces for CAGD: A Practical Guide. 2002 Burlington: Morgan Kaufmann

[9]

Fleishman S, Cohen-Or D, Silva CT. Robust moving least-squares fitting with sharp features. ACM Trans. Gr. (TOG). 2005, 24 544-552

[10]

Gilbert JC, Lemaréchal C. Numerical Optimization: Theoretical and Practical Aspects. 2006 Heidelberg: Springer

[11]

Guennebaud G, Gross M. Algebraic point set surfaces. CM Trans. Gr. (TOG). 2007, 26 23

[12]

Kanaya I, Chen Q, Kanemoto Y, Chihara K. Threedimensional modeling for virtual relic restoration. Multimed. IEEE. 2000, 7 2 42-44

[13]

Keim, D.A., Herrmann, A.: The gridfit algorithm: an efficient and effective approach to visualizing large amounts of spatial data. In: Proceedings of the conference on Visualization’98, pp. 181–188. IEEE, Research Triangle Park (1998)

[14]

Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math. Comput.. 1981, 37 155 141-158

[15]

Levin D. The approximation power of moving least-squares. Math. Comput. Am. Math. Soc.. 1998, 67 224 1517-1531

[16]

Levin D. Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization. 2004 Heidelberg: Springer. 37-49

[17]

M$\ddot{u}$ller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation, pp. 141–151. Eurographics Association, Grenoble (2004)

[18]

Nealen, A.: An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation. URL: http://www.nealen.com/projects, 130, 150 (2004)

[19]

Oudjene M, Ben-Ayed L, Delameziere A, Batoz J-L. Shape optimization of clinching tools using the response surface methodology with moving least-square approximation. J. Mater. Process. Technol.. 2009, 209 1 289-296

[20]

$\ddot{O}$ztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. In: Computer Graphics Forum, vol. 28, pp. 493–501. Wiley Online Library (2009)

[21]

Patrikalakis NM, Maekawa T. Shape Interrogation for Computer Aided Design and Manufacturing. 2002 Heidelberg: Springer

[22]

Pauly, M.: Point primitives for interactive modeling and processing of 3D geometry. Citeseer (2003)

[23]

Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Gr. (TOG) 25, 533–540 (2006)

[24]

Shen C, O’Brien JF, Shewchuk JR. Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Gr. (TOG). 2004, 23 896-904

[25]

Verbeek JJ, Vlassis N, Kröse B. A k-segments algorithm for finding principal curves. Pattern Recognit. Lett.. 2002, 23 8 1009-1017

[26]

Wang, H., Scheidegger, C.E., Silva, C.T.: Optimal bandwidth selection for mls surfaces. In: Shape Modeling and Applications, 2008. IEEE International Conference on SMI 2008, pp. 111–120. IEEE (2008)

[27]

Yang Z, Kim T-W. Moving parabolic approximation of point clouds. Computer-Aided Des.. 2007, 39 12 1091-1112

[28]

Yang Z, Seo Y-H, Kim T-W. Adaptive triangular-mesh reconstruction by mean-curvature-based refinement from point clouds using a moving parabolic approximation. Computer-Aided Des.. 2010, 42 1 2-17

[29]

Flöry S. Fitting curves and surfaces to point clouds in the presence of obstacles. Comput. Aided Geom. Des.. 2009, 26 2 192-202

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/