On the Space of Conics on Complete Intersections

Hong R. Zong

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (1) : 33 -45.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (1) : 33 -45. DOI: 10.1007/s40304-014-0029-7
Article

On the Space of Conics on Complete Intersections

Author information +
History +
PDF

Abstract

We get sharp degree bound for generic smoothness and connectedness of the space of lines and conics in low degree complete intersections which generalizes the old work about Fano scheme of lines on hypersurfaces. As a consequence, we prove that for a Fano complete intersection $X$ with index $\ge 2$, the $1$-Griffiths group generated by algebraic $1$-cycles homologous to $0$ modulo algebraic equivalence is trivial, which is a conjecture for general rationally connected varieties.

Keywords

Rational curves / Fano varieties / Cycles

Cite this article

Download citation ▾
Hong R. Zong. On the Space of Conics on Complete Intersections. Communications in Mathematics and Statistics, 2014, 2(1): 33-45 DOI:10.1007/s40304-014-0029-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barth W, Van de Ven A. Fano-varieties of lines on hypersurfaces. Arch. Math.. 1978, 31 96-104

[2]

Bonavero, L., Höring, A.: Counting conics in complete intersections, Acta Mathematica Vietnamica 35, No.1 (2010). pp. 23–30, Special Volume dedicated to the Proceedings of the Hanoi Conference on Complex Geometry

[3]

Grothendieck, A., Raynaud, M.: (2003) [1971], Revtements tales et groupe fondamental (SGA 1), Documents Mathmatiques (Paris) [Mathematical Documents (Paris)], 3, Paris: Socit Mathmatique de France, arXiv:math/0206203, ISBN 978-2-85629-141-2, MR 2017446

[4]

Hartshorne R. Complete intersections and connectedness. Am. J. Math.. 1962, 84 3 497-508

[5]

Kollár J. Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A series of modern surveys in mathematics [Results in mathematics and related areas. 3rd series. A series of modern surveys in mathematics]. 1996 Berlin: Springer

[6]

Tian, Z., Zong, H. R.: One cycles on rationally connected varieties. Comp. Math. 1209.4342. arXiv:1209.4342 (2012)

[7]

Zong, H. R.: Curve classes on rationally connected varieties. arXiv:1207.0575

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/