Solutions of Nabla Fractional Difference Equations Using N-Transforms

J. Jagan Mohan , G. V. S. R. Deekshitulu

Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (1) : 1 -16.

PDF
Communications in Mathematics and Statistics ›› 2014, Vol. 2 ›› Issue (1) : 1 -16. DOI: 10.1007/s40304-014-0027-9
Article

Solutions of Nabla Fractional Difference Equations Using N-Transforms

Author information +
History +
PDF

Abstract

In the present paper, we present some important properties of N-transform, which is the Laplace transform for the nabla derivative on the time scale of integers (Bohner and Peterson in Dynamic equations on time scales, Birkhauser, Boston, 2001; Advances in dynamic equations on time scales, Birkhauser, Boston, 2002). We obtain the N-transform of nabla fractional sums and differences and then apply this transform to solve some nabla fractional difference equations with initial value problems. Finally, using N-transforms, we prove that discrete Mittag-Leffler function is the eigen function of Caputo type nabla fractional difference operator $\nabla ^{\alpha }$.

Keywords

Fractional difference / Caputo type / Exponential order / N-transform / Discrete Mittag-Leffler function

Cite this article

Download citation ▾
J. Jagan Mohan, G. V. S. R. Deekshitulu. Solutions of Nabla Fractional Difference Equations Using N-Transforms. Communications in Mathematics and Statistics, 2014, 2(1): 1-16 DOI:10.1007/s40304-014-0027-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

[2]

Gray HL, Zhang NF. On a new definition of the fractional difference. Math. Comp.. 1988, 50 513-529

[3]

Miller, K.S., Ross, B.: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, pp. 139–152, Nihon University, Koriyama, Japan (1989)

[4]

Deekshitulu GVSR, Jagan Mohan J. Fractional difference inequalities. Commun. Appl. Anal.. 2010, 14 1 89-98

[5]

Deekshitulu, G.V.S.R., Jagan Mohan, J.: Acta Et Commentationes Universitatis Tartuensis De Mathematica. Fractional difference inequalities of Gronwall-Bellman type 17(1), 19–30 (2013)

[6]

Deekshitulu, G.V.S.R., Jagan Mohan, J.: Some New Fractional Difference Inequalities of Gronwall-Bellman type. Math. Sci. doi:10.1186/2251-7456-6-69

[7]

Atici FM, Eloe PW. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Eqs.. 2009, 3 1-12

[8]

Atici FM, Eloe PW. Linear systems of nabla fractional difference equations. Rocky Mount. J. Math.. 2011, 41 2 353-370

[9]

George Anastassiou, A.: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51, 562–571 (2010)

[10]

Hein J, Mc Carthy S, Gaswick N, Mc Kain B, Spear K. Laplace transforms for the nabla difference operator. PanAm. Math. J.. 2011, 21 3 79-96

[11]

Jagan Mohan J.: Solutions of perturbed linear nabla fractional difference equations. In: Differential Equations and Dynamical Systems. Springer, Berlin (2013) doi:10.1007/s12591-013-0179-1

[12]

Jagan Mohan, J.: Solutions of perturbed nonlinear nabla fractional difference equations. Novi Sad J. Math. (to appear)

[13]

Mohan Jagan J, Deekshitulu GVSR. Comparison theorems on fractional order difference equations, Proyecciones. J. Math.. 2013, 31 4 47-62

[14]

Mohan Jagan, J., Deekshitulu, G.V.S.R.: Difference inequalities of fractional order, Proyecciones. J. Math. 32(3), 199–213 (2013)

[15]

Jagan Mohan, J., Deekshitulu, G.V.S.R.: Fractional order difference equations. Int. J. Differ. Eqs. 2012(780619), 11. doi:10.1155/2012/780619

[16]

Čermák J, Kisela T. Note on a discretization of a linear fractional differential equation. Math. Bohem.. 2010, 135 2 179-188

[17]

Acar N, Atici FM. Exponential functions of discrete fractional calculus. Appl. Anal. Discret. Math.. 2013, 7 343-353

[18]

Abdeljawad, T., Atici, F.M.: On the definitions of nabla fractional operators. Abst. Appl. Anal. Volume 2012, Article ID 406757, 13. doi:10.1155/2012/406757

[19]

Atsushi N. An integrable mapping with fractional difference. J. Phys. Soc. Jpn.. 2003, 72 2181-2183

[20]

Abdeljawad T. On Riemann and Caputo fractional differences. Comput. Math. Appl.. 2011, 62 1602-1611

[21]

Agarwal RP. Difference Equations and Inequalities. 1992 New York: Marcel Dekker

[22]

Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. 2002 Boston: Birkhauser

[23]

Bohner M, Peterson A. Dynamic Equations on Time Scales. 2001 Boston: Birkhauser

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/