$p$-harmonic function,Level set,Gaussian curvature,Support function,Maximum prinicple" /> $p$-harmonic function" /> $p$-harmonic function,Level set,Gaussian curvature,Support function,Maximum prinicple" />

The Concavity of the Gaussian Curvature of the Convex Level Sets of $p$-Harmonic Functions with Respect to the Height

Xi-Nan Ma , Wei Zhang

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (4) : 465 -489.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (4) : 465 -489. DOI: 10.1007/s40304-014-0025-y
Article

The Concavity of the Gaussian Curvature of the Convex Level Sets of $p$-Harmonic Functions with Respect to the Height

Author information +
History +
PDF

Abstract

For the $p$-harmonic function with strictly convex level sets, we find an auxiliary function which comes from the combination of the norm of gradient of the $p$-harmonic function and the Gaussian curvature of the level sets of $p$-harmonic function. We prove that this curvature function is concave with respect to the height of the $p$-harmonic function. This auxiliary function is an affine function of the height when the $p$-harmonic function is the $p$-Green function on ball.

Keywords

$p$-harmonic function')">$p$-harmonic function / Level set / Gaussian curvature / Support function / Maximum prinicple

Cite this article

Download citation ▾
Xi-Nan Ma, Wei Zhang. The Concavity of the Gaussian Curvature of the Convex Level Sets of $p$-Harmonic Functions with Respect to the Height. Communications in Mathematics and Statistics, 2013, 1(4): 465-489 DOI:10.1007/s40304-014-0025-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors LV. Conformal Invariants. Topics in Geometric Function Theory. Reprint of the Original. 1973 Providence: AMS Chelsea. 162

[2]

Bian B.-J., Guan P., Ma X.-N., Xu L. A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations. Indiana Univ. Math. J.. 2011, 60 1 101-119

[3]

Bianchini C, Longinetti M, Salani P. Quasiconcave solutions to elliptic problems in convex rings. Indiana Univ. Math. J.. 2009, 58 4 1565-1589

[4]

Caffarelli LA, Friedman A. Convexity of solutions of semilinear elliptic equations. Duke Math. J.. 1985, 52 2 431-456

[5]

Caffarelli LA, Spruck J. Convexity properties of solutions to some classical variational problems. Comm. Partial Differ. Equ.. 1982, 7 11 1337-1379

[6]

Chang S.-Y. A., Ma X.-N., Yang P. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete Contin. Dyn. Syst.. 2010, 28 3 1151-1164

[7]

Chen C-Q, Shi S-J. Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations. Sci. China Math.. 2011, 54 10 2063-2080

[8]

Chiti, G., Longinetti, M.: Differential Inequalities for Minkowski Functionals of Level Sets. General Inequalities, 6 (Oberwolfach, 1990), 109–127, Internat. Ser. Numer. Math., 103, Birkhäuser, Basel, (1992)

[9]

Gabriel RM. A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc.. 1957, 32 286-294

[10]

Guan P, Xu L. Convexity estimates for level sets of quasiconcave solutions to fully nonlinear elliptic equations. J. Reine Angew. Math.. 2013, 680 41-67

[11]

Jost J, Ma X-N, Ou Q-Z. Curvature estimates in dimensions 2 and 3 for the level sets of $p$-harmonic functions in convex rings. Trans. Amer. Math. Soc.. 2012, 364 4605-4627

[12]

Kawohl B. Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, 1150. 1985 Berlin: Springer. 136

[13]

Korevaar NJ. Convexity of level sets for solutions to elliptic ring problems. Comm. Partial Differ. Equ.. 1990, 15 4 541-556

[14]

Lewis JL. Capacitary functions in convex rings. Arch. Rational Mech. Anal.. 1977, 66 3 201-224

[15]

Longinetti, M.: Convexity of the level lines of harmonic functions. Boll. Un. Mat. Ital. A (6) 2(1), 71–75 (1983)

[16]

Longinetti M. On minimal surfaces bounded by two convex curves in parallel planes. J. Differ. Equ.. 1987, 67 3 344-358

[17]

Longinetti, M.: A Strict Convexity Principle for Nonlinear Elliptic Equations. Preprint, (2006)

[18]

Longinetti M., Salani P. On the Hessian matrix and Minkowski addition of quasiconvex functions. J. Math. Pures Appl. (9). 2007, 88 3 276-292

[19]

Ma X.-N., Ou Q.-Z., Zhang W. Gaussian curvature estimates for the convex level sets of $$p$$ p -harmonic functions. Comm. Pure Appl. Math.. 2010, 63 7 935-971

[20]

Ma X-N, Ye J, Ye Y-H. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $\mathbb{R}^3$. Commun. Pure Appl. Anal.. 2011, 10 1 225-243

[21]

Ortel M, Schneider W. Curvature of level curves of harmonic functions. Canad. Math. Bull.. 1983, 26 4 399-405

[22]

Schneider, R.: Convex Bodies: The Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, p. xiv+490 (1993)

[23]

Shiffman M. On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes. Ann. Math.. 1956, 2 63 77-90

[24]

Talenti, G.: On functions, whose lines of steepest descent bend proportionally to level lines. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(4), 587–605 (1983)

[25]

Wang P.-H., Zhang W. Gaussian curvature estimates for the convex level sets of solutions for some nonlinear elliptic partial differential equations. J. Partial Differ. Equ.. 2012, 25 3 239-275

[26]

Ye Y.-H. Gauss curvature estimates for the convex level sets of a minimal surface immersed in $$\mathbb{R}^{n+1}$$ R n + 1. Nonlinear Anal.. 2011, 74 16 5663-5677

[27]

Zhang T, Zhang W. On convexity of level sets of $p$-harmonic functions. J. Differ. Equ.. 2013, 255 7 2065-2081

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/