Local Discontinuous Galerkin Method for the Impact-Induced Wave in a Slender Cylinder Composed of a Non-Convex Elastic Material

Jinfeng Jiang , Yan Xu

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (4) : 393 -415.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (4) : 393 -415. DOI: 10.1007/s40304-013-0022-6
Article

Local Discontinuous Galerkin Method for the Impact-Induced Wave in a Slender Cylinder Composed of a Non-Convex Elastic Material

Author information +
History +
PDF

Abstract

In this paper, we present a numerical scheme based on the local discontinuous Galerkin (LDG) method for the wave propagation of phase transition in a slender cylinder by introducing new temporal auxiliary variables. The stability for the LDG scheme is presented. In order to verify the validity of the LDG scheme, we give the errors and accuracy order of a numerical example. Due to the interaction between the dispersion and the material nonlinearity, some interesting wave patterns occur for different pre-strains and impacts, such as the pattern with transformation front and solitary wave and the pattern with rarefaction wave and solitary wave. We also investigate the interaction of the transformation fronts and rarefaction waves, and demonstrate this interesting wave phenomena.

Keywords

Local discontinuous Galerkin method / Phase transition / Wave pattern / Slender cylinder

Cite this article

Download citation ▾
Jinfeng Jiang, Yan Xu. Local Discontinuous Galerkin Method for the Impact-Induced Wave in a Slender Cylinder Composed of a Non-Convex Elastic Material. Communications in Mathematics and Statistics, 2013, 1(4): 393-415 DOI:10.1007/s40304-013-0022-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abeyaratne R, Knowles JK. Kinetic relations and the propagation of phase boundary in solids. Arch. Ration. Mech. Anal.. 1991, 114 119-154

[2]

Abeyaratne R, Knowles JK. Evolution of Phase Transitions: A Continuum Theory. 2006 Cambridge: Cambridge University Press

[3]

Cockburn B, Gau H. A model numerical scheme for the propagation of phase transitions in solids. SIAM J. Sci. Comput.. 1996, 17 1092-1121

[4]

Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal.. 1998, 35 2440-2463

[5]

Cockburn B, Shu C-W. The Runge–Kutta discontinuous Galerkin methods for convection-domainated problems. J. Sci. Comput.. 2001, 16 173-261

[6]

Dai HH. Non-existence of one-dimensional stress problems in solid–solid phase transitions and uniqueness conditions for incompressible phase-transforming materials. C. R. Acad. Sci., Paris, Ser. I. 2004, 338 981-984

[7]

Dai HH, Xu ZL. Impact-induced wave patterns in a slender cylinder composed of a non-convex elastic material. AIP Conf. Proc.. 2008, 1029 77

[8]

Fǎciu C, Mihǎilescu-Suliciu M. On modelling phase propagation in SMAs by a Maxwellian thermo-viscoelastic approach. Int. J. Solids Struct.. 2002, 39 3811-3830

[9]

Knowles JK. Impact-induced tensile waves in a rubberlike material. SIAM J. Appl. Math.. 2002, 62 1153-1175

[10]

Li ZQ, Sun QP. The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int. J. Plast.. 2002, 18 1481-1498

[11]

Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids. 1995, 47 1243-1281

[12]

Shaw JA, Kyriakides S. On the nucleation and propagation of phase transition fronts in a NiTi alloy. Acta Mater.. 1997, 45 683-700

[13]

Shaw JA, Kyriakides S. Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int. J. Plast.. 1998, 13 837-871

[14]

Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys.. 1988, 77 439-471

[15]

Slemrod M. Dynamic phase transitions in a van der Waals fluid. J. Differ. Equ.. 1984, 52 1-23

[16]

Tian, L.L., Xu, Y., Kuerten, J.G.M., Van der Vegt, J.J.W.: A local discontinuous Galerkin method for the propagation of phase transition in solids and fluids. J. Sci. Comput. (2013). doi:10.1007/s10915-013-9778-9

[17]

Vainchtein A. Dynamics of non-isothermal martensitic phase trasitions and hysteresis. Int. J. Solids Struct.. 2002, 39 3387-3408

[18]

Vainchtein A. Dynamics of phase transitions and hysteresis in a viscoelastic Ericksen’s bar on an elastic foundation. J. Elast.. 1999, 57 243-280

[19]

Xu Y, Shu C-W. Local discontinuous Galerkin methods for three classes of nonlinear wave equations. J. Comput. Math.. 2004, 22 250-274

[20]

Xu Y, Shu C-W. Local discontinuous Galerkin methods for nonlinear Schrö dinger equations. J. Comput. Phys.. 2005, 205 72-97

[21]

Xu Y, Shu C-W. Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D. 2005, 208 21-58

[22]

Xu Y, Shu C-W. Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng.. 2006, 195 3430-3447

[23]

Xu Y, Shu C-W. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng.. 2007, 196 3805-3822

[24]

Xu Y, Shu C-W. A local discontinuous Galerkin methods for the Camassa–Holm equations. SIAM J. Numer. Anal.. 2008, 46 1998-2021

[25]

Yan J, Shu C-W. A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal.. 2002, 40 769-791

[26]

Yan J, Shu C-W. Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput.. 2002, 17 27-47

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/