Liouville Energy on a Topological Two Sphere

XiuXiong Chen , Meijun Zhu

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (4) : 369 -385.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (4) : 369 -385. DOI: 10.1007/s40304-013-0020-8
Article

Liouville Energy on a Topological Two Sphere

Author information +
History +
PDF

Abstract

In this paper we shall give an analytic proof of the fact that the Liouville energy on a topological two sphere is bounded from below. Our proof does not rely on the uniformization theorem and the Onofri inequality, thus it is essentially needed in the alternative proof of the uniformization theorem via the Calabi flow. Such an analytic approach also sheds light on how to obtain the boundedness for E 1 energy in the study of general Kähler manifolds.

Keywords

Uniformization theorem / Liouville energy / Moser–Trudinger–Onofri inequality / Blowup analysis

Cite this article

Download citation ▾
XiuXiong Chen, Meijun Zhu. Liouville Energy on a Topological Two Sphere. Communications in Mathematics and Statistics, 2013, 1(4): 369-385 DOI:10.1007/s40304-013-0020-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin T. Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom.. 1976, 11 573-598

[2]

Aubin T. Meilleures constantes dans le thorme d’inclusion de Sobolev et un thorme de Fredholm non linaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal.. 1979, 32 2 148-174

[3]

Bando S., Mabuchi T. Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic Geometry. 1987 Amsterdam: North-Holland. 11-40

[4]

Berger M. Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds. J. Differ. Geom.. 1971, 5 325-332

[5]

Brezis H., Merle F. Uniform estimates and blow-up behavior for solutions of −Δu=V(x)e u in two dimensions. Commun. Partial Differ. Equ.. 1991, 16 8–9 1223-1253

[6]

Calabi E. Extremal Kähler metrics. Seminar on Differential Geometry. 1982 Princeton: Princeton University Press. 259-290

[7]

Chen X.X. Calabi flow in Riemann surfaces revisited: a new point of view. Int. Math. Res. Not.. 2001, 6 275-297

[8]

Chen X.X. Lower bound of the energy functional E 1 (I)—stability of Kähler Ricci flow. J. Geom. Anal.. 2006, 16 1 23-28

[9]

Chen X.X., Tian G. Ricci flow on Kähler–Einstein surfaces. Invent. Math.. 2002, 147 3 487-544

[10]

Chen X.X., Tian G. Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. JHÉS. 2008, 107 1-107

[11]

Chen X.X., Lu P., Tian G. A note on uniformization of Riemann surfaces by Ricci flow. Proc. Am. Math. Soc.. 2006, 134 11 3391-3393

[12]

Chen W., Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math. J.. 1991, 63 3 615-622

[13]

Cherrier P. Une ingalit de Sobolev sur les varits riemanniennes. Bull. Sci. Math.. 1979, 103 4 353-374

[14]

Chow B. The Ricci flow on the 2-sphere. J. Differ. Geom.. 1991, 33 2 325-334

[15]

Ding W., Jost J., Li J., Wang G. The differential equation δu=8π−8πhe u on a compact Riemann surface. Asian J. Math.. 1997, 1 2 230-248

[16]

Ding W., Jost J., Li J., Wang G. An analysis of the two-vortex case in the Chern–Simons Higgs model. Calc. Var. Partial Differ. Equ.. 1998, 7 1 87-97

[17]

Hamilton R. The Ricci flow on surfaces. Mathematics and General Relativity. 1988 Providence: Am. Math. Soc.. 237-262

[18]

Hebey E., Vaugon M. Meilleures constantes dans le theoreme d’inclusion de Sobolev. Ann. Inst. Henri Poincaré, Anal. Non Linéaire. 1996, 13 57-93

[19]

Li Y.Y., Zhu M. Sharp Sobolev trace inequality on Riemannian manifolds with boundary. Commun. Pure Appl. Math.. 1997, 50 449-487

[20]

Li J., Zhu M. Sharp local embedding inequalities. Commun. Pure Appl. Math.. 2006, 59 122-144

[21]

Li S., Zhu M. A sharp inequality and its applications. Commun. Contemp. Math.. 2009, 11 3 433-446

[22]

Pali N. A consequence of a lower bound of the K-energy. Int. Math. Res. Not.. 2005, 2005 50 3081-3090

[23]

Osgood B., Phillips R., Sarnak P. Compact isospectral sets of surfaces. J. Funct. Anal.. 1988, 80 1 212-234

[24]

Song J., Weinkove B. Energy functionals and canonical Kähler metrics. Duke Math. J.. 2007, 137 1 159-184

[25]

Tosatti V. On the critical points of the E k functionals in Kähler geometry. Proc. Am. Math. Soc.. 2007, 135 12 3985-3988

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/