Detecting Quaternionic Maps Between Hyperkähler Manifolds

Jingyi Chen , Jiayu Li

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (3) : 305 -314.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (3) : 305 -314. DOI: 10.1007/s40304-013-0016-4
Article

Detecting Quaternionic Maps Between Hyperkähler Manifolds

Author information +
History +
PDF

Abstract

For a harmonic map between two hyperkäher manifolds, we prove a Weitzenböck type formula for the defining quantity of quaternionic maps, and apply it to harmonic morphisms. We also provide a sufficient and necessary condition for a smooth map being quaternionic.

Keywords

Harmonic maps / Hyperkähler manifolds / Quaternionic maps / Weitzenböck formula

Cite this article

Download citation ▾
Jingyi Chen, Jiayu Li. Detecting Quaternionic Maps Between Hyperkähler Manifolds. Communications in Mathematics and Statistics, 2013, 1(3): 305-314 DOI:10.1007/s40304-013-0016-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berger M. Sur les groupes d’holonomie des variété à connexion affine et variété riemanniennes. Bull. Soc. Math. Fr.. 1955, 83 279-330

[2]

Chen J. Complex anti-self-dual connections on product of Calabi-Yau surfaces and triholomorphic curves. Commun. Math. Phys.. 1999, 201 201-247

[3]

Chen J., Li J. Quaternionic maps between hyperkähler manifolds. J. Differ. Geom.. 2000, 55 355-384

[4]

Cheng S.Y. Liouville theorem for harmonic maps. Proc. Symp. Pure Math.. 1980, 36 147-151

[5]

Eells J., Lemaire L. Selected Topics in Harmonic Maps. 1983 Providence: Am. Math. Soc.

[6]

Figuroa-O’Farrill J.M., Köhl C., Spence B. Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves. Nucl. Phys. B. 1998, 521 3 419-443

[7]

Fuglede B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble). 1978, 28 2 107-144

[8]

Ishihara T. A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ.. 1979, 19 215-229

[9]

Li J., Tian G. A blow-up formula for stationary harmonic maps. Int. Math. Res. Not.. 1998, 14 735-755

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/