Fokker–Planck Equations for SPDE with Non-trace-class Noise

G. Da Prato , F. Flandoli , M. Röckner

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (3) : 281 -304.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (3) : 281 -304. DOI: 10.1007/s40304-013-0015-5
Article

Fokker–Planck Equations for SPDE with Non-trace-class Noise

Author information +
History +
PDF

Abstract

In this paper we develop a new technique to prove existence of solutions of Fokker–Planck equations on Hilbert spaces for Kolmogorov operators with non-trace-class second order coefficients or equivalently with an associated stochastic partial differential equation (SPDE) with non-trace-class noise. Applications include stochastic 2D and 3D-Navier–Stokes equations with non-trace-class additive noise.

Keywords

Fokker–Planck equation / Kolmogorov operator / Stochastic Partial Differential Equations / Stochastic Navier–Stokes equations / Non-trace-class noise

Cite this article

Download citation ▾
G. Da Prato, F. Flandoli, M. Röckner. Fokker–Planck Equations for SPDE with Non-trace-class Noise. Communications in Mathematics and Statistics, 2013, 1(3): 281-304 DOI:10.1007/s40304-013-0015-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio S., Ferrario B. Uniqueness of solutions of the stochastic Navier–Stokes equation with invariant measure given by the enstrophy. Ann. Probab.. 2004, 32 2 1632-1649

[2]

Albeverio S., Ferrario B. Some methods of infinite dimensional analysis in hydrodynamics: an introduction. SPDE in Hydrodynamic: Recent Progress and Prospects. 2008 Berlin: Springer. 1-50

[3]

Bogachev V.I. Measure Theory. 2007 Berlin: Springer

[4]

Bogachev V.I., Da Prato G., Röckner M. Parabolic equations for measures on infinite-dimensional spaces. Dokl. Akad. Nauk. 2008, 421 4 439-444

[5]

Bogachev V.I., Da Prato G., Röckner M. Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces. J. Evol. Equ.. 2010, 10 487-509

[6]

Bogachev V.I., Da Prato G., Röckner M. Uniqueness for solutions of Fokker–Planck equations on infinite dimensional spaces. Commun. Partial Differ. Equ.. 2011, 36 925-939

[7]

Bogachev V.I., Da Prato G., Röckner M. Existence results for Fokker–Planck equations in Hilbert spaces. Seminar on Stochastic Analysis, Random Fields and Applications VI. 2011 23-35

[8]

Bogachev, V.I., Da Prato, G., Röckner, M., Shaposhnikov, S.: Analytic approach to infinite dimensional continuity and Fokker–Planck equations. CRC 701, Preprint (2013)

[9]

Crauel H., Flandoli F. Attractors for random dynamical systems. Probab. Theory Relat. Fields. 1994, 100 3 365-393

[10]

Da Prato G., Debussche A. Two-dimensional Navier–Stokes equations driven by a space-time white noise. J. Funct. Anal.. 2002, 196 1 180-210

[11]

Da Prato G., Debussche A. Ergodicity for the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. (9). 2003, 82 8 877-947

[12]

Da Prato G., Zabczyk J. Stochastic Equations in Infinite Dimensions. 1992 Cambridge: Cambridge University Press

[13]

Flandoli F. Dissipativity and invariant measures for stochastic Navier–Stokes equations. Nonlinear Differ. Equ. Appl.. 1994, 1 4 403-423

[14]

Flandoli F. Irreducibility of the 3-D stochastic Navier–Stokes equation. J. Funct. Anal.. 1997, 149 1 160-177

[15]

Flandoli F. An introduction to 3D stochastic fluid dynamics. SPDE in Hydrodynamic: Recent Progress and Prospects. 2008 Berlin: Springer. 51-150

[16]

Flandoli F., Gatarek D. Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields. 1995, 102 3 367-391

[17]

Flandoli F., Romito M. Partial regularity for the stochastic Navier–Stokes equations. Trans. Am. Math. Soc.. 2002, 354 6 2207-2241

[18]

Flandoli F., Romito M. Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Relat. Fields. 2008, 140 3–4 407-458

[19]

Prêvot C., Röckner M. A Concise Course on Stochastic Partial Differential Equations. 2007 Berlin: Springer

[20]

Röckner, M., Zhu, R., Zhu, X.: A note on stochastic semilinear equations and their associate Fokker–Planck equations. CRC 701, Preprint (2013)

[21]

Temam R. Navier–Stokes Equations and Nonlinear Functional Analysis. 1983 Philadelphia: SIAM

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/