Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids

Yunqing Huang , Shangyou Zhang

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 143 -162.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 143 -162. DOI: 10.1007/s40304-013-0012-8
Article

Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids

Author information +
History +
PDF

Abstract

By the standard theory, the stable Q k+1,kQ k,k+1/$Q_{k}^{dc'}$ divergence-free element converges with the optimal order of approximation for the Stokes equations, but only order k for the velocity in H 1-norm and the pressure in L 2-norm. This is due to one polynomial degree less in y direction for the first component of velocity, which is a Q k+1,k polynomial of x and y. In this manuscript, we will show by supercloseness of the divergence free element that the order of convergence is truly k+1, for both velocity and pressure. For special solutions (if the interpolation is also divergence-free), a two-order supercloseness is shown to exist. Numerical tests are provided confirming the accuracy of the theory.

Keywords

Mixed finite element / Stokes equations / Divergence-free element / Quadrilateral element / Rectangular grids / Supercloseness / Superconvergence

Cite this article

Download citation ▾
Yunqing Huang, Shangyou Zhang. Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids. Communications in Mathematics and Statistics, 2013, 1(2): 143-162 DOI:10.1007/s40304-013-0012-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsworth M., Coggins P. A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow. IMA J. Numer. Anal.. 2002, 22 307-327

[2]

Arnold D.N., Qin J. Vichnevetsky R., Steplemen R.S. Quadratic velocity/linear pressure Stokes elements. Advances in Computer Methods for Partial Differential Equations VII. 1992

[3]

Arnold D., Scott L.R., Vogelius M. Regular inversion of the divergence operator with Dirichlet conditions on a polygon. Ann. Sc. Norm. Super Pisa, Cl. Sci.. 1988, 15 169-192

[4]

Bernardi C., Maday Y. Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Methods Appl. Sci.. 1999, 9 395-414

[5]

Bernardi C., Raugel B. Analysis of some finite elements of the Stokes problem. Math. Comput.. 1985, 44 71-79

[6]

Boland J.M., Nicolaides R.A. Stability of finite elements under divergence constraints. SIAM J. Numer. Anal.. 1983, 20 722-731

[7]

Boland J.M., Nicolaides R.A. Stable and semistable low order finite elements for viscous flows. SIAM J. Numer. Anal.. 1985, 22 474-492

[8]

Brenner S.C., Scott L.R. The Mathematical Theory of Finite Element Methods. 1994 New York: Springer

[9]

Brezzi F., Falk R. Stability of higher-order Hood–Taylor methods. SIAM J. Numer. Anal.. 1991, 28 3 581-590

[10]

Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. 1991 Berlin: Springer

[11]

Case M., Ervin V., Linke A., Rebholz L. Improving mass conservation in FE approximations of the NSE with C0 velocities: a connection between Scott–Vogelius elements and grad-div stabilization. SIAM J. Numer. Anal.. 2011, 49 4 1461-1481

[12]

Chen C.M., Huang Y.Q. High Accuracy Theory of Finite Element Methods. 1995 Hunan: Hunan Science Press(in Chinese)

[13]

Ciarlet P.G. The Finite Element Method for Elliptic Problems. 1978 Amsterdam: North-Holland

[14]

Falk R.S., Neilan M. Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal.. 2013, 51 2 1308-1326

[15]

Fortin M., Glowinski R. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. 1983 Amsterdam: North Holland

[16]

Guzman, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. (accepted)

[17]

Huang Y., Zhang S. A lowest order divergence-free finite element on rectangular grids. Front. Math. China. 2011, 6 2 253-270

[18]

Lin J., Lin Q. Superconvergence for the Bogner–Fox–Schmit element. Math. Numer. Sin.. 2004, 26 1 47-50

[19]

Qin, J.: On the convergence of some low order mixed finite elements for incompressible fluids. Thesis, Pennsylvania State University (1994)

[20]

Qin J., Zhang S. Stability and approximability of the P1-P0 element for Stokes equations. Int. J. Numer. Methods Fluids. 2007, 54 497-515

[21]

Raviart P.A., Girault V. Finite Element Methods for Navier–Stokes Equations. 1986 Berlin: Springer

[22]

Scott L.R., Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO. Model. Math. Anal. Numer.. 1985, 19 111-143

[23]

Scott L.R., Vogelius M. Conforming finite element methods for incompressible and nearly incompressible continua. Lectures in Applied Mathematics. 1985 221-244

[24]

Scott L.R., Zhang S. Finite-element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput.. 1990, 54 483-493

[25]

Scott L.R., Zhang S. Multilevel iterated penalty method for mixed elements. The Proceedings for the Ninth International Conference on Domain Decomposition Methods. 1998 133-139

[26]

Shu S., Yu H., Huang Y. Superconvergence and high accuracy combination formula of bicubic spline element for plate problems. Numer. Math. Sin.. 1998, 20 2 167-174in Chinese

[27]

Stenberg R., Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer. Math.. 1996, 72 367-389

[28]

Yan N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. 2008 Beijing: Science Press

[29]

Zhang S. A new family of stable mixed finite elements for 3D Stokes equations. Math. Comput.. 2005, 74 250 543-554

[30]

Zhang S. On the P1 Powell–Sabin divergence-free finite element for the Stokes equations. J. Comput. Math.. 2008, 26 456-470

[31]

Zhang S. A family of Q k+1,k×Q k,k+1 divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal.. 2009, 47 2090-2107

[32]

Zhang S. On the full C 1Q k finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech.. 2010, 2 701-721

[33]

Zhang S. Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids. Calcolo. 2011, 48 3 211-244

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/