Partial C 0-Estimate for Kähler–Einstein Metrics

Gang Tian

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 105 -113.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 105 -113. DOI: 10.1007/s40304-013-0011-9
Article

Partial C 0-Estimate for Kähler–Einstein Metrics

Author information +
History +
PDF

Abstract

In this short note, we give a proof of our partial C 0-estimate for Kähler–Einstein metrics. Our proof uses a compactness theorem of Cheeger–Colding–Tian and L 2-estimate for $\bar{\partial}$-operator.

Keywords

Kähler–Einstein metrics / Gromov–Hausdorff limit / Partial C 0-estimate

Cite this article

Download citation ▾
Gang Tian. Partial C 0-Estimate for Kähler–Einstein Metrics. Communications in Mathematics and Statistics, 2013, 1(2): 105-113 DOI:10.1007/s40304-013-0011-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheeger J., Colding T., Tian G. Constraints on singularities under Ricci curvature bounds. C. R. Acad. Sci. Paris Sér. I, Math.. 1997, 324 645-649

[2]

Colding T., Naber A. Sharp Hoölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math.. 2012, 176 2 1173-1229

[3]

Croke C.B. Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ec. Norm. Super., 4 Ser.. 1980, 13 419-435

[4]

Donaldson, S., Sun, S.: Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry. arXiv:1206.2609

[5]

Li P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann. Sci. Ec. Norm. Super., 4 Ser.. 1980, 13 451-469

[6]

Tian G. On Kähler–Einstein metrics on certain Kähler manifolds with C 1(M)>0. Invent. Math.. 1987, 89 225-246

[7]

Tian G. On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math.. 1990, 101 101-172

[8]

Tian G. Kähler–Einstein on algebraic manifolds. Proceedings of the International Congress of Mathematicians, Vols. I, II. 1991 Tokyo: Math. Soc. Japan. 587-598

[9]

Tian G. . Dai . Einstein metrics on Fano manifolds. Metric and Differential Geometry. Proceeding of the 2008 Conference Celebrating J. Cheeger’s 65th Birthday. 2012 Basel: Birkhäuser

[10]

Tian, G.: Extremal Kähler metrics and K-stability. Preprint, June 2012

[11]

Tian, G.: K-stability and Kähler–Einstein metrics. arXiv:1211.4669

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/