Hölder Continuity of Solutions of SPDEs with Reflection

Robert C. Dalang , Tusheng Zhang

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 133 -142.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (2) : 133 -142. DOI: 10.1007/s40304-013-0009-3
Article

Hölder Continuity of Solutions of SPDEs with Reflection

Author information +
History +
PDF

Abstract

In this paper, we obtain the Hölder continuity of the solutions of SPDEs with reflection, which have singular drifts (random measures).

Keywords

Parabolic obstacle problem / Stochastic partial differential equations with reflection / Random measure / Garsia’s lemma

Cite this article

Download citation ▾
Robert C. Dalang, Tusheng Zhang. Hölder Continuity of Solutions of SPDEs with Reflection. Communications in Mathematics and Statistics, 2013, 1(2): 133-142 DOI:10.1007/s40304-013-0009-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bally V., Millet A., Sanz-Solé M. Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab.. 1995, 23 1 178-222

[2]

Dalang R.C., Sanz-Solé M. Hölder–Sobolev regularity of the solution to the stochastic wave equation in dimension three. Mem. Am. Math. Soc.. 2009, 199

[3]

Dalang R.C., Khoshnevisan D., Nualart E. Hitting properties for systems of non-linear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat.. 2007, 3 231-271

[4]

Dalang R.C., Mueller C., Zambotti L. Hitting properties of parabolic SPDE’s with reflection. Ann. Probab.. 2006, 34 4 1423-1450

[5]

Donati-Martin C., Pardoux E. White noise driven SPDEs with reflection. Probab. Theory Relat. Fields. 1993, 95 1-24

[6]

Donati-Martin C., Pardoux E. EDPS réfléchies et calcul de Malliavin [SPDEs with reflection and Malliavin calculus]. Bull. Sci. Math.. 1997, 121 5 405-422

[7]

Funaki T., Olla S. Fluctuations for ∇ϕ interface model on a wall. Stoch. Process. Appl.. 2001, 94 1 1-27

[8]

Haussmann U.G., Pardoux E. Stochastic variational inequalities of parabolic type. Appl. Math. Optim.. 1989, 20 163-192

[9]

Nualart D., Pardoux E. White noise driven by quasilinear SPDEs with reflection. Probab. Theory Relat. Fields. 1992, 93 77-89

[10]

Sanz-Solé M., Vuillermot P.A. Equivalence and Hölder–Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann. Inst. Henri Poincaré Probab. Stat.. 2003, 39 4 703-742

[11]

Walsh J.B. Hennequin P.L. An introduction to stochastic partial differential equations. Ecole d’été de Probabilité de St Flour. 1986 Berlin: Springer

[12]

Xu T., Zhang T. White noise driven SPDEs with reflection: existence, uniqueness and large deviation principles. Stoch. Process. Appl.. 2009, 119 10 3453-3470

[13]

Zambotti L. A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. J. Funct. Anal.. 2001, 180 195-209

[14]

Zhang T. White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal.. 2010, 33 2 137-151

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/