Maximal Coupling of Euclidean Brownian Motions

Elton P. Hsu , Karl-Theodor Sturm

Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (1) : 93 -104.

PDF
Communications in Mathematics and Statistics ›› 2013, Vol. 1 ›› Issue (1) : 93 -104. DOI: 10.1007/s40304-013-0007-5
Original Article

Maximal Coupling of Euclidean Brownian Motions

Author information +
History +
PDF

Abstract

We prove that the mirror coupling is the unique maximal Markovian coupling of two Euclidean Brownian motions starting from single points and discuss the connection between the uniqueness of maximal Markovian coupling of Brownian motions and certain mass transportation problems.

Keywords

Euclidean Brownian motion / Mirror coupling / Maximal coupling

Cite this article

Download citation ▾
Elton P. Hsu, Karl-Theodor Sturm. Maximal Coupling of Euclidean Brownian Motions. Communications in Mathematics and Statistics, 2013, 1(1): 93-104 DOI:10.1007/s40304-013-0007-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burdzy K., Kendall W.S. Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Probab.. 2000, 10 362-409

[2]

Chen M.F. Optimal Markovianian couplings and applications. Acta Math. Sin. New Ser.. 1994, 10 3 260-275

[3]

Gangbo M., McCann R.J. The geometry of optimal transportation. Acta Math.. 1996, 177 113-161

[4]

Goldstein S. Maximal coupling. Z. Wahrscheinlichkeitstheor. Verw. Geb.. 1979, 46 193-204

[5]

Griffeath D. A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb.. 1975, 31 94-106

[6]

Kuwada K. On uniqueness of maximal coupling for diffusion processes with a reflection. J. Theor. Probab.. 2007, 20 4 935-957

[7]

Kuwada K. Characterization of maximal Markovian couplings for diffusion processes. Electron. J. Probab.. 2009, 14 633-662

[8]

Kuwada K., Sturm K.T. Counterexample for the optimality of Kendall–Cranston coupling. Electron. Commun. Probab.. 2007, 12 66-72

[9]

Kuwada K., Sturm K.T. Monotonicity of time-dependent transportation costs and coupling by reflection. Potential Anal.. 2013

[10]

Lindvall T. Lectures on the Coupling Method. 1992 New York: Wiley

[11]

Lindvall T., Rogers L.C.G. Coupling of multidimensional diffusions by reflection. Ann. Probab.. 1986, 11 3 860-872

[12]

Revuz D., Yor M. Continuous Martingales and Brownian Motion. 1994 2 Berlin: Springer

[13]

Sturm, K.T.: A semigroup approach to harmonic maps. SFB 611 preprint 39, Universität Bonn (2003)

[14]

Villani C. Topics in Mass Transportation. 2003 Providence: AMS

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/